单调栈问题

#单调栈
##洛谷P5788
###题目
给出项数为 nn 的整数数列 a_{1 \dots n}a
1…n

定义函数 f(i)f(i) 代表数列中第 ii 个元素之后第一个大于 a_ia
i

的元素的下标,即 f ( i ) = min ⁡ i a i j 。若不存在,则。若不存在,则 f ( i ) = 0 f(i)=\min_{i a_i} {j}。若不存在,则。若不存在,则f(i)=0 f(i)=miniaij。若不存在,则。若不存在,则f(i)=0

试求出 f(1\dots n)f(1…n)。

Input
第一行一个正整数 nn。

第二行 nn 个正整数 a_{1\dots n}a
1…n

Output
一行 nn 个整数 f(1\dots n)f(1…n) 的值。

Sample 1
Inputcopy Outputcopy
5
1 4 2 3 5
2 5 4 5 0
Hint
【数据规模与约定】

对于 30%30% 的数据,n\leq 100n≤100;

对于 60%60% 的数据,n\leq 5 \times 10^3n≤5×10
3

对于 100%100% 的数据,1 \le n\leq 3\times 10^61≤n≤3×10
6
,1\leq a_i\leq 10^91≤a
i

≤10
9

维护一个单调减的栈即可。注意要用一个数组存储答案。注意stk[i]数组存储的直接就是下标
####代码

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
const int N=3000005;
int stk[N];
int tt=0;
int a[N];
int ans[N];//存储
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];	
	}
	for(int i=1;i<=n;i++)
	{
		while(tt!=0&&a[stk[tt]]<a[i]){
			ans[stk[tt]]=i;
			tt--;
		}
		stk[++tt]=i;
	}
	for(int i=1;i<=n;i++)
	{
		cout<<ans[i]<<" ";
	}
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值