#单调栈
##洛谷P5788
###题目
给出项数为 nn 的整数数列 a_{1 \dots n}a
1…n
。
定义函数 f(i)f(i) 代表数列中第 ii 个元素之后第一个大于 a_ia
i
的元素的下标,即
f
(
i
)
=
min
i
a
i
j
。若不存在,则。若不存在,则
f
(
i
)
=
0
f(i)=\min_{i a_i} {j}。若不存在,则。若不存在,则f(i)=0
f(i)=miniaij。若不存在,则。若不存在,则f(i)=0。
试求出 f(1\dots n)f(1…n)。
Input
第一行一个正整数 nn。
第二行 nn 个正整数 a_{1\dots n}a
1…n
。
Output
一行 nn 个整数 f(1\dots n)f(1…n) 的值。
Sample 1
Inputcopy Outputcopy
5
1 4 2 3 5
2 5 4 5 0
Hint
【数据规模与约定】
对于 30%30% 的数据,n\leq 100n≤100;
对于 60%60% 的数据,n\leq 5 \times 10^3n≤5×10
3
;
对于 100%100% 的数据,1 \le n\leq 3\times 10^61≤n≤3×10
6
,1\leq a_i\leq 10^91≤a
i
≤10
9
。
维护一个单调减的栈即可。注意要用一个数组存储答案。注意stk[i]数组存储的直接就是下标
####代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
const int N=3000005;
int stk[N];
int tt=0;
int a[N];
int ans[N];//存储
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
while(tt!=0&&a[stk[tt]]<a[i]){
ans[stk[tt]]=i;
tt--;
}
stk[++tt]=i;
}
for(int i=1;i<=n;i++)
{
cout<<ans[i]<<" ";
}
return 0;
}