题目
给你一个下标从 0 开始的 正 整数数组 nums
。
如果 nums
的一个子数组满足:移除这个子数组后剩余元素 严格递增 ,那么我们称这个子数组为 移除递增 子数组。比方说,[5, 3, 4, 6, 7]
中的 [3, 4]
是一个移除递增子数组,因为移除该子数组后,[5, 3, 4, 6, 7]
变为 [5, 6, 7]
,是严格递增的。
请你返回 nums
中 移除递增 子数组的总数目。
注意 ,剩余元素为空的数组也视为是递增的。
子数组 指的是一个数组中一段连续的元素序列。
示例 1:
输入:nums = [1,2,3,4] 输出:10 解释:10 个移除递增子数组分别为:[1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4] 和 [1,2,3,4]。移除任意一个子数组后,剩余元素都是递增的。注意,空数组不是移除递增子数组。
示例 2:
输入:nums = [6,5,7,8] 输出:7 解释:7 个移除递增子数组分别为:[5], [6], [5,7], [6,5], [5,7,8], [6,5,7] 和 [6,5,7,8] 。 nums 中只有这 7 个移除递增子数组。
示例 3:
输入:nums = [8,7,6,6] 输出:3 解释:3 个移除递增子数组分别为:[8,7,6], [7,6,6] 和 [8,7,6,6] 。注意 [8,7] 不是移除递增子数组因为移除 [8,7] 后 nums 变为 [6,6] ,它不是严格递增的。
思路
主要在于如何保证删除后剩下的要严格递增,所以当我们删除了一个子数组的情况下会剩下一个前缀和后缀要保证两个,要保证递增
然后是得到前后缀之后怎么统计数量用i,和j来标记前后缀
可以移除如下后缀(下标范围):(先不考虑后缀一起移除了)
[i+1,n−1],移除该后缀,完整保留最长严格递增前缀。
[i,n−1]
[i−1,n−1]
⋯
[0,n−1],移除整个数组。
这一共有 i+2 个。
考虑后缀
[i+1,j−1]
[i,j−1]
[i−1,j−1]
⋯
[0,j−1]
这一共有 i+2 个。注意 i=−1 时只能移除 1 个子数组,即 [0,j−1],同样符合 i+2 这个结论,因为 (−1)+2=1。
累加这些 i+2,即为答案
解题方法
先统计前缀的长度,记录下标i;如果都是递增的,zj返回n*(n+1)/2
ans先加上移除后缀的数量
保留后缀循环,,每个j对于满足的i都会有i+2种移除方法,(由于j是递减的所以不会漏)
注意
由于不能移除空数组,i 与 j 的中间至少要有一个数,所以必须要有 i≤j−2。但是 i=j−1 的情况说明 a 是严格递增数组,已经在前面特判了,所以无需判断 i 和 j−2 的大小关系。
代码
class Solution {
public long incremovableSubarrayCount(int[] nums) {
int n=nums.length;
long ans=0;
int i=0;
while(i<n-1&&nums[i+1]>nums[i]){
i++;
}
if(i+1==n){
return (n*(n+1))/2;
}
ans=i+2;
for(int j=n-1;j==n-1||nums[j]<nums[j+1];j--){
while(i>=0&&nums[i]>=nums[j]){
i--;
}
ans+=i+2;
}
return ans;
}
}