深度学习入门
文章平均质量分 90
深度学习入门专栏是为初学者准备的一系列文章,旨在帮助读者了解深度学习的基本概念、原理和应用。该专栏将从深度学习的基础知识开始,逐步深入,介绍深度学习的常用算法、模型和工具,包括神经网络、卷积神经网络、循环神经网络、深度信念网络、深度强化学习等。
摘星月为妆。
深圳大学大二在读,记录日常学习,欢迎各位大佬的支持,我们一起进步!!
展开
-
7.深度学习入门:误差反向传播法详细讲解
链式法则是微积分中的一种重要规则,它可以用于求解复合函数的导数。在数学中,复合函数是由多个函数组合而成的函数,例如fgxf(g(x))fgx)),其中gxg(x)gx和fxf(x)fx都是函数。链式法则描述了如何计算复合函数的导数,它可以帮助我们更好地理解函数之间的关系,从而解决复杂问题。若yfuy = f(u)yfuugxu = g(x)ugxdydxdydu⋅dudxdxdydudy⋅dxd。原创 2023-07-10 17:48:21 · 1081 阅读 · 3 评论 -
6.深度学习入门:数值微分,梯度,学习算法的实现详细讲解
例如,在物理学中,速度可以表示为位置关于时间的偏导数,加速度可以表示为速度关于时间的偏导数。前向差分使用函数在当前点和稍后一点的函数值来估计导数,后向差分使用函数在当前点和稍前一点的函数值来估计导数,而中心差分使用函数在当前点和当前点左右两侧的函数值来估计导数。梯度是多元函数的偏导数向量,它表示函数在某一点上的最大变化率的方向。偏导数是多元函数的导数的一种,它表示当函数的一个自变量变化时,函数的变化率。,它是一个二维向量,指向函数在某一点上的最大变化率的方向。在二元函数的情况下,偏导数可以表示为。原创 2023-07-08 09:50:20 · 2967 阅读 · 1 评论 -
5.深度学习入门:从神经网络的学习开始
在使用训练数据和测试数据时,通常会将数据集分成训练集和测试集两部分,比如将数据集的80%作为训练数据,20%作为测试数据。测试数据是用于测试机器学习模型准确性和泛化能力的数据集,它通常包含输入数据,但不包含输出数据。模型可以通过对测试数据的预测,来评估模型的准确性和泛化能力。训练数据是用于训练机器学习模型的数据集,它通常包含已知的输入和输出数据,模型可以通过这些数据来学习输入和输出之间的关系。合适的损失函数可以帮助我们衡量模型的性能、优化模型和调整模型参数,以便我们可以选择最佳的模型并获得最佳的预测结果。原创 2023-07-05 11:15:07 · 820 阅读 · 0 评论 -
4.深度学习入门:从输出层设计看深度学习在手写数字识别中的优势
在实际应用中,批处理的大小通常是一个超参数,需要根据具体的问题和模型进行调整。通常情况下,较大的批处理大小可以提高训练效率,但可能会降低模型的性能和泛化能力,而较小的批处理大小则可以提高模型的性能和泛化能力,但可能会降低训练效率。同时,需要注意数据的预处理和模型的调参,以提高模型的性能。softmax函数适用于多分类问题的输出层,而对于其他层,可以选择ReLU、tanh等激活函数。输出层的神经元数量只是一个通用的指导原则,实际应用中可能需要根据具体的问题和模型进行调整。原创 2023-07-04 15:50:36 · 1137 阅读 · 0 评论 -
3.深度学习入门:多维数组的运算 多维数组 矩阵乘法 神经网络的内积 层神经网络的实现 符号确认 各层间信号传递的实现
初始化神经网络,包括输入层、隐藏层和输出层的大小、权重和偏置。sigmoid:sigmoid 激活函数,用于增强神经网络的表达能力。sigmoid_derivative:sigmoid 激活函数的导数,用于反向传播时计算梯度。feedforward:前向传播,用于将输入信号传递到输出层。backpropagation:反向传播,用于计算损失函数的梯度并更新权重和偏置。train:训练神经网络,包括多次迭代前向传播和反向传播。predict:预测输出结果。原创 2023-07-01 11:51:53 · 4025 阅读 · 0 评论 -
2.深度学习入门:感知机、神经网络和激活函数——探索人工智能的核心技术
但是,在某些情况下,阶跃函数也是有用的,例如在二元分类问题中,可以将阶跃函数作为输出层的激活函数,将输出值限制在0和1之间。这些非线性函数在神经网络中都有广泛的应用,例如Sigmoid函数和Tanh函数常用作激活函数,ReLU函数常用作卷积神经网络中的激活函数,Softmax函数常用于多分类问题中的输出层激活函数。上述代码中,step_function函数接受一个向量或矩阵形式的输入x,将其与0进行比较,生成一个布尔型的数组y,然后将y转换为整型数组,即可得到阶跃函数的输出。原创 2023-06-29 10:26:45 · 4020 阅读 · 0 评论 -
1.深度学习入门:感知机是什么和感知机的实现(详细讲解)
在上面的代码中,我们定义了一个Perceptron类,包含了感知机的初始化、训练和预测方法。在predict()方法中,我们通过计算加权和和阈值函数,得到一个二元输出,即将输入数据分为两类。在这个示例中,我们使用了一个简单的数据集,包含4个样本和2个特征。在以上示例代码中,我们通过将权重向量和偏置项设置为已知的值,来导入已经训练好的模型。在预测新数据时,我们可以使用已经训练好的模型来进行分类。在以上示例代码中,我们通过将权重向量和偏置项设置为已知的值,来导入已经训练好的模型。异或门有两个输入和一个输出。原创 2023-06-27 16:21:23 · 5415 阅读 · 2 评论