7.深度学习入门:误差反向传播法详细讲解

误差反向传播法

计算图

用计算图求解

误差反向传播法是深度学习中常用的一种优化算法,用于计算神经网络中每个参数的梯度,从而实现网络的训练。它基于计算图的思想,通过将神经网络表示为有向无环图,将网络中每个节点的输出和输入之间的关系表示为边,从而实现高效的梯度计算。

计算图是一种用于表示计算过程的图形化工具,它将计算过程表示为节点和边的有向无环图。在神经网络中,每个节点表示一个操作,例如加法、乘法、激活函数等,每个边表示节点之间的依赖关系。计算图可以帮助我们更好地理解神经网络的计算过程,并且可以自动计算每个节点的梯度,从而实现高效的反向传播。

使用计算图求解神经网络的训练过程,通常需要进行以下步骤:

  • 定义计算图:将神经网络表示为有向无环图,每个节点表示一个操作,每个边表示节点之间的依赖关系。
  • 前向传播:从输入开始,按照计算图的拓扑顺序依次计算每个节点的输出,直到得到最终的输出结果。
  • 计算损失函数:将输出结果与真实值进行比较,计算出损失函数的值。
  • 反向传播:从损失函数开始,按照计算图的逆拓扑顺序依次计算每个节点的梯度,并将梯度传递给前一层节点,直到计算出每个参数的梯度。
  • 参数更新:根据参数的梯度,使用优化算法更新每个参数的值,从而实现神经网络的训练。

局部计算

  • 局部计算是指在神经网络中,每个节点只与其输入节点相连,只计算其与输入节点的函数值,而不考虑其它节点的函数值。这种局部计算的方式可以大大减少计算量,提高神经网络的计算效率。
  • 具体来说,神经网络中的每个节点都是一个数学函数,它的输出值只与其输入值有关。因此,对于每个节点,我们只需要计算其与输入节点的函数值,而不需要计算其与其它节点的函数值。这种局部计算的方式可以大大减少计算量,提高神经网络的计算效率。
  • 在实际应用中,神经网络通常由多个层组成,每个层由多个节点组成。在每一层中,每个节点只与前一层的节点相连,只计算其与前一层节点的函数值,而不考虑其它层的节点的函数值。这种局部计算的方式可以有效地降低神经网络的计算复杂度,提高网络的训练和预测速度。

为何用计算图解题

使用计算图可以帮助我们更好地理解和解决复杂问题。计算图是一种图形化的工具,它将计算过程表示为节点和边的有向无环图,每个节点表示一个操作,每个边表示节点之间的依赖关系。通过使用计算图,我们可以更好地理解计算过程中各个操作之间的关系,从而更加清晰地理解问题的本质。

  • 使用计算图还可以实现自动求导,这对于深度学习等需要大量梯度计算的领域非常有用。计算图可以自动计算每个节点的梯度,从而实现高效的反向传播,这可以大大提高神经网络的训练速度和效率。
  • 此外,计算图还可以帮助我们进行优化和调试。通过对计算图进行分析,我们可以找到计算过程中的瓶颈和错误,从而对网络进行优化和调试,提高网络的性能和效率。
    因此,使用计算图可以帮助我们更好地理解和解决复杂问题,实现自动求导和反向传播,以及进行优化和调试,是深度学习等领域不可或缺的工具之一。

链式法则

计算图的反向传播

链式法则是微积分中的一种重要规则,它可以用于求解复合函数的导数。在神经网络中,每个节点都是一个数学函数,它的输出值只与其输入值有关。因此,可以使用链式法则来计算神经网络中每个节点的梯度。
具体来说,链式法则可以表示为:
y = f ( u ) y = f(u) y=f(u) u = g ( x ) u = g(x) u=g(x),则有:
d y d x = d y d u ⋅ d u d x \dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dx} dxdy=dudydxdu

  • 在神经网络中,每个节点都可以看作是一个复合函数,它的输出值只与其输入值有关。因此,可以使用链式法则来计算神经网络中每个节点的梯度。
  • 具体来说,可以使用计算图来表示神经网络的计算过程,并使用反向传播算法来计算每个节点的梯度。

在计算图中,每个节点表示一个操作,每个边表示节点之间的依赖关系。在前向传播过程中,按照计算图的拓扑顺序依次计算每个节点的输出值。在反向传播过程中,按照计算图的逆拓扑顺序依次计算每个节点的梯度,并将梯度传递给前一层节点,直到计算出每个参数的梯度。

具体来说,反向传播算法可以分为以下几个步骤:

  • 计算损失函数的梯度:将输出结果与真实值进行比较,计算出损失函数的梯度。
  • 计算输出层节点的梯度:根据链式法则,将损失函数的梯度乘以输出层节点的激活函数的导数,得到输出层节点的梯度。
  • 计算隐藏层节点的梯度:根据链式法则,将后一层节点的梯度乘以当前层节点的激活函数的导数,得到当前层节点的梯度。
  • 计算参数的梯度:根据链式法则,将当前层节点的梯度乘以当前层节点的输入值,得到当前层参数的梯度。
  • 更新参数:根据参数的梯度,使用优化算法更新每个参数的值,从而实现神经网络的训练。

什么是链式法则

链式法则是微积分中的一种重要规则,它可以用于求解复合函数的导数。在数学中,复合函数是由多个函数组合而成的函数,例如 f ( g ( x ) ) f(g(x)) f(g(x)),其中 g ( x ) g(x) g(x) f ( x ) f(x) f(x) 都是函数。链式法则描述了如何计算复合函数的导数,它可以帮助我们更好地理解函数之间的关系,从而解决复杂问题。
具体来说,链式法则可以表示为:
y = f ( u ) y = f(u) y=f(u) u = g ( x ) u = g(x) u=g(x),则有:
d y d x = d y d u ⋅ d u d x \dfrac{dy}{dx} = \dfrac{dy}{du} \cdot \dfrac{du}{dx} dxdy=dudydxdu
这个公式表明,对于复合函数 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)),它的导数可以通过先求出 y y y u u u 的导数 d y d u \dfrac{dy}{du} dudy,再求出 u u u x x x 的导数 d u d x \dfrac{du}{dx} dxdu,最后将两个导数相乘得到。这个过程相当于将复合函数分解成两个简单函数的导数的乘积。

链式法则在微积分中有广泛的应用,特别是在神经网络中的反向传播算法中。在神经网络中,每个节点都可以看作是一个复合函数,它的输出值只与其输入值有关。因此,可以使用链式法则来计算神经网络中每个节点的梯度,从而实现神经网络的训练和优化。

链式法则和计算图

链式法则和计算图是深度学习中非常重要的概念,它们可以帮助我们更好地理解和计算神经网络中的梯度。

  • 链式法则是微积分中的一种规则,它可以用于求解复合函数的导数。在神经网络中,每个节点都可以看作是一个复合函数,它的输出值只与其输入值有关。因此,可以使用链式法则来计算神经网络中每个节点的梯度。
  • 计算图是一种图形化的工具,它将计算过程表示为节点和边的有向无环图,每个节点表示一个操作,每个边表示节点之间的依赖关系。通过使用计算图,我们可以更好地理解计算过程中各个操作之间的关系,从而更加清晰地理解问题的本质。
  • 在神经网络中,可以使用计算图来表示神经网络的计算过程,并使用反向传播算法来计算每个节点的梯度。在计算图中,每个节点表示一个操作,每个边表示节点之间的依赖关系。在前向传播过程中,按照计算图的拓扑顺序依次计算每个节点的输出值。在反向传播过程中,按照计算图的逆拓扑顺序依次计算每个节点的梯度,并将梯度传递给前一层节点,直到计算出每个参数的梯度。
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值