5.深度学习入门:从神经网络的学习开始

神经网络的学习

从数据中学习

从数据中学习是指机器学习算法通过对大量数据进行学习,从而自动地发现数据中的规律和模式,并用于预测未知数据的结果。这种学习方式是基于数据驱动的,而不是基于人类的先验知识。
从数据中学习的过程可以分为以下几个步骤

  • 数据准备:从数据源中获取数据,并对数据进行清洗、预处理和特征提取等操作,以便于机器学习算法的处理。
  • 模型选择:选择适合当前任务的机器学习模型,例如决策树、神经网络、支持向量机等。
  • 模型训练:将准备好的数据输入到机器学习模型中,通过不断地迭代和优化,让模型逐渐提高准确性和泛化能力。
  • 模型评估:使用测试数据集来评估模型的性能和准确性,以检查模型是否存在过拟合或欠拟合等问题。
  • 模型应用:将训练好的模型应用到实际场景中,例如预测未来趋势、识别图像、推荐系统等。

数据驱动

数据驱动是指通过对大量数据进行分析和挖掘,从中发现规律和模式,并将这些规律和模式应用到实际问题中,以实现更好的决策和行动。数据驱动的方法已经在许多领域得到了广泛应用,例如金融、医疗、营销等。
数据驱动的过程通常包括以下几个步骤:

  • 数据收集:收集相关的数据,并对数据进行清洗和预处理,以便于后续的分析和挖掘。
  • `数据分析:通过统计分析、机器学习、数据挖掘等方法,对数据进行分析和挖掘,发现其中的规律和模式。
  • 模型建立:根据数据分析的结果,建立相应的模型,并对模型进行优化和调整,以提高其准确性和可靠性。
  • 决策和行动:基于模型的结果,进行相应的决策和行动,例如产品改进、营销策略调整等。

训练数据和测试数据

在机器学习中,训练数据和测试数据是非常重要的概念,它们分别用于训练和测试机器学习模型的准确性和泛化能力。

训练数据是用于训练机器学习模型的数据集,它通常包含已知的输入和输出数据,模型可以通过这些数据来学习输入和输出之间的关系。训练数据应该足够大,以覆盖模型可能遇到的各种情况,同时应该尽可能地准确和代表性。
测试数据是用于测试机器学习模型准确性和泛化能力的数据集,它通常包含输入数据,但不包含输出数据。模型可以通过对测试数据的预测,来评估模型的准确性和泛化能力。测试数据应该与训练数据不同,以确保模型能够泛化到新的数据集上。
在使用训练数据和测试数据时,通常会将数据集分成训练集和测试集两部分,比如将数据集的80%作为训练数据,20%作为测试数据。训练数据用于训练模型,测试数据用于评估模型的准确性和泛化能力。这样可以避免模型在训练数据上过拟合,而在新数据上表现不佳的情况。

损失函数

均方误差

损失函数是机器学习中用于衡量模型预测结果与实际结果之间差异的函数。在机器学习中,我们通常需要通过最小化损失函数来优化模型,以使模型的预测结果更接近实际结果。

均方误差(Mean Squared Error,MSE)是一种常用的损失函数,它衡量模型预测结果与实际结果之间的平均误差的平方。均方误差的计算公式如下:

MSE = (1/n) * Σ(y - ŷ)²

  • 其中,y表示实际结果,ŷ表示模型的预测结果,n表示样本数量。均方误差越小,说明模型的预测结果与实际结果之间的误差越小,模型的准确性越高。

均方误差可以用于回归问题的损失函数,例如预测房价、股票价格等。除了均方误差,还有其他常用的损失函数,例如交叉熵(Cross
Entropy)用于分类问题的损失函数。

交叉熵误差

交叉熵误差(Cross Entropy Error)是一种常用的损失函数,通常用于分类问题中。它衡量模型预测结果与实际结果之间的差异,并用于优化模型,以使预测结果更接近实际结果。

=交叉熵误差的计算公式如下:

H(p, q) = -Σ p(x) * log q(x)

  • 其中,p(x)表示实际结果的概率分布,q(x)表示模型的预测结果的概率分布。交叉熵误差越小,说明模型的预测结果与实际结果之间的误差越小,模型的准确性越高。
  • 在机器学习中,交叉熵误差通常用于分类问题的损失函数,例如图像分类、语音识别等。交叉熵误差可以帮助模型更好地区分不同类别之间的差异,从而提高模型的分类准确性。

mini-batch学习

Mini-batch学习是一种常用的机器学习方法,它将训练数据集分成多个小批次(mini-batch),每次使用一个小批次的数据进行模型训练,而不是使用整个数据集进行训练。

Mini-batch学习的优点有:

  • 减少内存占用:使用mini-batch可以减少内存占用,因为不需要同时加载整个数据集。
  • 加速训练过程:使用mini-batch可以加速训练过程,因为可以在每个小批次上计算梯度,而不是在整个数据集上计算梯度。
  • 提高模型泛化能力:使用mini-batch可以提高模型的泛化能力,因为每个小批次的数据都是随机选择的,可以减少模型对特定数据集的过拟合。

在使用mini-batch学习时,通常需要选择合适的批次大小(batchsize),批次大小通常是一个超参数,需要根据具体问题进行调整。批次大小过小会导致训练时间变长,批次大小过大会导致内存占用过高。

mini-batch版交叉熵误差的实现

Mini-batch版交叉熵误差的实现通常需要使用批次大小(batch size)来确定每次使用多少个样本进行计算。假设有一个大小为batch_size的小批次数据,其中第i个样本的实际标签为yi,模型的预测结果为ŷi,则该小批次的交叉熵误差可以通过以下公式计算:

H = -(1/batch_size) * Σyi * log(ŷi)

  • 其中,batch_size表示批次大小,yi表示第i个样本的实际标签,ŷi表示模型的预测结果。

在代码实现中,可以使用NumPy库来进行矩阵运算,从而加速计算。下面是一个使用Python和NumPy实现mini-batch版交叉熵误差的示例代码:

import numpy as np

def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)
        
    batch_size = y.shape[0]
    return -np.sum(t * np.log(y)) / batch_size

在上面的代码中,y表示模型的预测结果,t表示实际标签。如果y是一维数组,则需要将t转换为一维数组。然后,计算批次大小,使用NumPy库中的矩阵运算计算交叉熵误差。

为何要设定损失函数

在机器学习中,损失函数(loss function)是一种用于衡量模型预测结果与实际结果之间差异的函数。在模型训练过程中,我们的目标是最小化损失函数,以使模型的预测结果与实际结果之间的差异最小化。因此,设定合适的损失函数非常重要
下面是设定损失函数的几个原因:

  • 衡量模型的性能:损失函数可以帮助我们衡量模型的性能,以便我们可以选择最佳的模型。通常,我们选择损失函数来最小化预测结果与实际结果之间的差异。
  • 优化模型:损失函数可以用于优化模型。在模型训练期间,我们使用梯度下降等优化算法来最小化损失函数,以便模型能够更准确地预测结果。
  • 调整模型参数:损失函数可以帮助我们调整模型参数。在每个训练迭代中,我们使用损失函数的梯度来更新模型参数,以便模型能够更好地预测结果。

设定合适的损失函数是机器学习中非常重要的一步。合适的损失函数可以帮助我们衡量模型的性能、优化模型和调整模型参数,以便我们可以选择最佳的模型并获得最佳的预测结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值