使用的是10X Genomics
5k Peripheral blood mononuclear cells (PBMCs) from a healthy donor (v3 chemistry)
Single Cell Gene Expression Dataset by Cell Ranger 3.0.2
的数据
1.保持好习惯,先清空一下环境
rm(list = ls())
2. 读取下载的数据,文件夹中包括三个文件:1. barcodes.tsv 2. features.tsv 3. matrix.mtx,将这三个文件加载到环境中。
pbmc.data <- Read10X(data.dir = "D:/myprojects/5k pbmc/5k_pbmc_v3_filtered_feature_bc_matrix/filtered_feature_bc_matrix")
3. 创建Seurat对象,counts为读取的源文件,project为Seurat对象想保存的文件名,可以加上限定条件:min.cells为组织中分离的最少细胞数,min.features为一个细胞中测出的最少的基因数量
pbmc <- CreateSeuratObject(counts=pbmc.data,project = "pbmc5k",min.cells = 3,min.features = 200 )
4. 查看一下pbmc的构成
> pbmc
An object of class Seurat
18791 features across 4962 samples within 1 assay
Active assay: RNA (18791 features, 0 variable features)
5. 进行质控
创建一列名为percent.mt的新数据,添加到pbmc中,使用PercentageFeatureSet函数(此函数可以计算每个细胞中每一细胞器的QC指标)计算线粒体基因占比
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc,pattern = "^MT-")
%>%为管道函数,就是把左件的值发送给右件的表达式(暂存在内存当中,没有保存为对象在硬盘中)
6. 查看一下
pbmc@meta.data %>% head()
orig.ident nCount_RNA nFeature_RNA percent.mt
AAACCCAAGCGTATGG-1 pbmc5k 13536 3502 10.7
AAACCCAGTCCTACAA-1 pbmc5k 12667 3380 5.6
AAACCCATCACCTCAC-1 pbmc5k 962 346 53.1
AAACGCTAGGGCATGT-1 pbmc5k 5788 1799 10.6
AAACGCTGTAGGTACG-1 pbmc5k 13185 2886 7.8
AAACGCTGTGTCCGGT-1 pbmc5k 15495 3801 7.5
7. 将QC结果展示为小提琴图,features中的名称加引号,ncol=3表示图形分三列展示
> VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
8. 可以结合散点图一起进行极值细胞的筛选删除