1.细胞鉴别
在上一步对各类细胞进行featureblot后,可以根据文献或者在线数据库来对细胞进行鉴别。此处我使用的是CellMarker网站。
对照起来进行鉴别,但是有些细胞簇有两个marker,有些细胞簇的marker有重合,所以鉴别这一步具有比较大的主观性,需要结合多个数据库或者文献进行判断。
在完成鉴别后,创建一个新的字符向量保存细胞名称,顺序从0-12一一对应。
以下是我自己的判断结果:
new.cluster.ids <- c("Memory T cell","CD14+ Mono", "CD8 T",
+ "NK", "CD8 T", "B", "B", "undefined", "Cytotoxic T", "NK","DC",
+"Megakaryocyte progenitor cell","CD1C+_B dendritic cell")
接下来,使用names()函数,将pbmc的levels和new.cluster.ids一一对应。
names<- 是通用替换函数。The default methods get and set the "names" attribute of a vector (including a list) or pairlist.用levels中的字符向量设置new.cluster.ids的names属性。
如果levels()比names()短,则会以NA填充names()。
names(new.cluster.ids) <- levels(pbmc)
> new.cluster.ids
0 1 2
"Memory T cell" "CD14+ Mono" "CD8 T"
3 4 5
"NK" "CD8 T" "B"
6