单细胞测序学习笔记(二)——细胞注释

本文介绍了单细胞测序数据的细胞注释过程,包括根据文献和数据库进行细胞鉴别,使用CellMarker进行初步判断,并通过Seurat对象进行聚类。此外,还详细阐述了如何在无法连接ExperimentHub服务器的情况下,利用SingleR的本地数据库进行细胞注释,以及分析注释结果与主观判断的差异。最后,展示了注释结果的热图和DimPlot对比图,提供了一种美化绘图的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.细胞鉴别 

在上一步对各类细胞进行featureblot后,可以根据文献或者在线数据库来对细胞进行鉴别。此处我使用的是CellMarker网站。

 

对照起来进行鉴别,但是有些细胞簇有两个marker,有些细胞簇的marker有重合,所以鉴别这一步具有比较大的主观性,需要结合多个数据库或者文献进行判断。

在完成鉴别后,创建一个新的字符向量保存细胞名称,顺序从0-12一一对应。

以下是我自己的判断结果:

new.cluster.ids <- c("Memory T cell","CD14+ Mono", "CD8 T",
+ "NK", "CD8 T", "B", "B", "undefined", "Cytotoxic T", "NK","DC",
+"Megakaryocyte progenitor cell","CD1C+_B dendritic cell")

接下来,使用names()函数,将pbmc的levels和new.cluster.ids一一对应。

names<- 是通用替换函数。The default methods get and set the "names" attribute of a vector (including a list) or pairlist.用levels中的字符向量设置new.cluster.ids的names属性。

如果levels()比names()短,则会以NA填充names()。

names(new.cluster.ids) <- levels(pbmc)
> new.cluster.ids
                              0                               1                               2 
                "Memory T cell"                    "CD14+ Mono"                         "CD8 T" 
                              3                               4                               5 
                           "NK"                         "CD8 T"                             "B" 
                              6            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值