简洁易懂递归 | 力扣124.二叉树中的最大路径和

本文介绍了在二叉树中寻找最大路径和的递归解决方案,通过三种情况分析了如何计算路径和,同时讨论了其时间复杂度(O(n))和空间复杂度(O(1))。代码展示了如何使用dp函数求解并返回最大路径和。
摘要由CSDN通过智能技术生成

Problem: 124. 二叉树中的最大路径和

解题方法

递归实现
最大路径和只会出现在以下3种情况:

  1. 只取当前节点
  2. 取当前节点和最大的一个孩子
  3. 取两个孩子,并以当前节点为根节点(这种无需return给上一层)

递归时,每次都记录下上面3种情况的最大值即可

复杂度

时间复杂度:

添加时间复杂度, 示例: O ( n ) O(n) O(n)

空间复杂度:

添加空间复杂度, 示例: O ( 1 ) O(1) O(1)

Code

class Solution {
public:
    int res;
    int dp(TreeNode* root){// 递归:包含当前节点的路径最大值
        if(!root)return -10005;
        int leftMax = dp(root->left);
        int rightMax = dp(root->right);
        int childMax = max(leftMax,rightMax);
        // 最大路径和只会出现在以下3种情况
        int a = root->val; // 只取当前节点
        int b = root->val+childMax; // 取当前节点和最大的一个孩子
        int c = root->val+leftMax+rightMax; // 取两个孩子,并以当前节点为根节点(这种无需return给上一层)
        // 每次都记录下上面3种情况的最大值
        int tmp = max(max(a,b),c);
        if(tmp > res)res=tmp;
        
        return max(a,b);// 返回给上一层节点用来做路径的一部分,因为c这种情况已经是一种路径了,就不用返回。
    }
    int maxPathSum(TreeNode* root) {
        res=-10005;
        dp(root);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值