假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i
,都有一个胃口值 g[i]
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j
,都有一个尺寸 s[j]
。如果 s[j] >= g[i]
,我们可以将这个饼干 j
分配给孩子 i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s)
{
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int count = 0;
int index = s.size() - 1;
for(int i = g.size() - 1;i >= 0; i--)//注意需要遍历的是g数组,不是s
{
if(index >=0 && s[index] >= g[i] )
{
count++;
index--;
}
}
return count;
}
};
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
class Solution {
public:
int wiggleMaxLength(vector<int>& nums)
{
if(nums.size() <= 1) return nums.size();
int prediff = 0;
int curdiff = 0;
int res = 1;
for(int i = 1;i < nums.size() ; i++)
{
curdiff = nums[i] - nums[i - 1];
if((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0))
{
res++;
prediff = curdiff;
}
}
return res;
}
};
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组
是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
class Solution {
public:
int maxSubArray(vector<int>& nums)
{
int res = INT32_MIN;
int count = 0;
for(int i = 0; i < nums.size() ; i++)
{
count += nums[i];
if(count >= res)
{
res = count;
}
if(count < 0)
{
count = 0;
}
}
return res;
}
};