斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
class Solution {
public:
int fib(int n)
{
if(n <= 0) return n;
int mid = 0;
int slow = 0;
int fast = 1;
for(int i = 2; i <= n ; i++)
{
mid = fast;
fast = fast + slow;
slow = mid;
}
return fast;
}
};
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
class Solution {
public:
int climbStairs(int n)
{
if(n <= 1) return n;
vector<int> dp(n+1);
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n ; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
};
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20] 输出:15 解释:你将从下标为 1 的台阶开始。 - 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost)
{
int dp0 = 0;
int dp1 = 0;
for(int i = 2 ; i <= cost.size() ; i++)
{
int dpi = min(dp1 + cost[i-1],dp0 + cost[i-2]);
dp0 = dp1;
dp1 = dpi;
}
return dp1;
}
};