文献综述 | A Review on Deep Learning Techniques Applied to Semantic Segmentation-2017-语义分割部分

A Review on Deep Learning Techniques Applied to Semantic Segmentation

阅读时候记录的一些自己简单的笔记,类似于文章框架,缺少讲解。

分割类综述论文大都引用此篇文章,特此学习。

摘要

1、引入了领域相关的术语及必要的背景知识;

2、介绍了主要的数据集以及对应的挑战,帮助研究者选取真正适合他们问题需要及目标的数据集;

3、介绍了现有的方法,突出了各自的贡献以及对本领域的积极影响;

4、展示了大量的针对所述方法及数据集的实验结果,同时对其进行了分析;

5、指出了一系列的未来工作的发展方向,并给出了对于目前最优的应用深度学习技术解决语义分割问题的研究结论。

引言

语义分割应用于静态2D图像、视频甚至3D数据、体数据,为场景理解做铺垫,场景理解即由具体到抽象。

语义分割应用:自动驾驶、人机交互、计算摄影学、图像搜索引擎、增强现实等

以往综述缺点:缺少数据集、未分析框架、未提供技术细节

本文贡献:1)数据集整理;2)重要语义分割方法起源、贡献的整理;3)从准确率、运行时间、内存占用等评价算法性能;4)总结现在技术,展望未来发展

Sec.2 术语和背景概念

语义分割

### 关于深度学习语义分割综述性资料 #### 综述论文 对于希望了解深度学习技术如何应用于语义分割的研究者而言,《A Review on Deep Learning Techniques Applied to Semantic Segmentation》提供了详尽的技术回顾,涵盖了多种网络架构及其改进措施[^1]。该文章不仅总结了现有模型的优点与局限性,还探讨了未来可能的发展方向。 #### 教程资源获取途径 关注特定领域内的高质量公众号也是不错的选择之一。“计算机视觉工坊”就曾分享过一系列有关深度学习的基础教程以及高级话题讨论文档集合,通过其平台可以方便地获得多份PDF格式的学习材料,这些资料覆盖广泛的主题,包括但不限于基础理论介绍、前沿研究进展等[^2]。 #### 方法解析博客文章 一篇发表于CSDN上的博文《语义分割中的深度学习方法全解》,深入浅出地讲解了几种经典的卷积神经网络结构——从早期提出的FCNs一直到后来演化的DeepLab系列版本,并对其工作原理进行了细致剖析;同时对比分析不同方案之间的异同之处,有助于读者构建完整的知识体系[^3]。 #### 实践案例研究 RefineNet作为一种专注于提升高分辨率图像处理效果的新颖框架,在保持计算效率的同时实现了更精细的目标识别能力。这篇提交至arXiv预印本网站的文章详细描述了Multi-Path Refinement Networks的设计理念和技术细节,适合那些想要探索最新研究成果并将其应用到实际项目当中的人士阅读[^4]。 ```python # 示例代码用于展示如何加载和准备数据集以供训练使用 import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor()]) dataset = datasets.Cityscapes(root='./data', split='train', mode='fine', target_type='semantic', transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=True) for images, labels in dataloader: # 进行前向传播、反向传播及优化操作... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值