A Review on Deep Learning Techniques Applied to Semantic Segmentation
阅读时候记录的一些自己简单的笔记,类似于文章框架,缺少讲解。
分割类综述论文大都引用此篇文章,特此学习。
摘要
1、引入了领域相关的术语及必要的背景知识;
2、介绍了主要的数据集以及对应的挑战,帮助研究者选取真正适合他们问题需要及目标的数据集;
3、介绍了现有的方法,突出了各自的贡献以及对本领域的积极影响;
4、展示了大量的针对所述方法及数据集的实验结果,同时对其进行了分析;
5、指出了一系列的未来工作的发展方向,并给出了对于目前最优的应用深度学习技术解决语义分割问题的研究结论。
引言
语义分割应用于静态2D图像、视频甚至3D数据、体数据,为场景理解做铺垫,场景理解即由具体到抽象。
语义分割应用:自动驾驶、人机交互、计算摄影学、图像搜索引擎、增强现实等
以往综述缺点:缺少数据集、未分析框架、未提供技术细节
本文贡献:1)数据集整理;2)重要语义分割方法起源、贡献的整理;3)从准确率、运行时间、内存占用等评价算法性能;4)总结现在技术,展望未来发展
Sec.2 术语和背景概念
语义分割