数据结构——红黑树

目录

一、红黑树基本概念

1.缘起

2.概念

(1)基本定义

(2)结点结构体定义

(3)基本要求

(4)图示

(5)黑高 

3.两个重要性质

4.时间复杂度

二、红黑树的基本操作

1.查找

2.插入

3.删除


一、红黑树基本概念

1.缘起

        由于平衡二叉树AVL的插入删除操作很容易破坏平衡特性,需要频繁调整树的形态。即:插入操作导致不平衡,则需要先计算平衡因子,找到最小不平衡子树(时间开销大),再进行LL/RR/LR/RL调整。

        而红黑树RBT的插入删除操作很多时候不会破坏“红黑”特性,无需频繁调整树的形态。即便是需要调整,一般都可以在常数级时间内完成。

        所以在以查为主、很少进行插入删除操作时选择平衡二叉树;如需频繁插入删除时用红黑树实用性更强。


2.概念

(1)基本定义

        红黑树是二叉排序树,即左子树结点值<=根结点值<=右子树结点值

(2)结点结构体定义

struct RBnode {			//红黑树的结点定义
	int key;			//关键字的值
	RBnode* parent;		//父结点指针
	RBnode* lchild;		//左孩子指针
	RBnode* rchild;		//右孩子指针
	int color;			//结点颜色,如可用0/1表示黑/红,也可用枚举型enum表示颜色
};

 (3)基本要求

        ①每个结点或是红色,或是黑色;

        ②根结点是黑色的;

        ③叶结点均是黑色的;

        ④不存在两个相邻的红结点(即红结点的父结点和孩子结点均是黑色的);

        ⑤对每个结点,从该结点到任一叶结点的简单路径上,所含黑结点的数量相同;

总结顺口溜:左根右,根叶黑,不红红,黑路同。

(4)图示

 (5)黑高 

        ①结点的黑高bh——从某结点出发(不含该结点)到达任一空叶结点的路径上黑结点总数;

        ②根结点黑高为h的红黑树,内部结点数(关键字)至少有2^{h}-1个,此时红黑树是“总共h层所有结点都是黑结点的满树形态”。


3.两个重要性质

        (1)从根结点到叶结点的最长路径不大于最短路径的2倍;

        (解释:从根结点到任一叶结点的路径都相同,但又要满足“不红红”,也就是极端情况为红结点穿插在每两个黑结点中间)

        (2)有n个内部结点的红黑树高度h\leq 2log_{2}(n+1);


4.时间复杂度

        红黑树的查找操作的时间复杂度为O(log_{2}n)


二、红黑树的基本操作

1.查找

        与BST、AVL相同,从根结点出发,左小右大,若查找到一个空叶结点,则查找失败;


2.插入

(1)先查找,确定插入位置(原理同二叉排序树),插入新结点;

(2)新结点是根结点的话,将其染为黑色

(3)新结点不是根的话,将其染为红色

        ①若插入新结点后依然满足红黑树的定义,则插入结束;

        ②若插入新结点后不满足红黑树定义,则需调整,调整的重点要看新结点叔叔的颜色:

                Ⅰ叔叔黑色:旋转+染色

                        LL型:右单旋,父换爷+染色;

                        RR型:左单旋,父换爷+染色;

                        LR型:左、右双旋,儿换爷+染色;

                        RL型:右、左双旋,儿换爷+染色;

                Ⅱ叔叔红色:染色+变新

                        叔、父、爷染色,爷变为新结点。

(4)补充解释:

        ①在插入一个新结点时,主要看其有没有违背“不红红”的性质即可;

        ②上述单旋双旋和二叉排序树、平衡二叉树中提到的旋转原理一样;

        ③上述的染色即颜色变换,原本是黑色就变红色,原本是红色就变黑色。


3.删除

        ①红黑树的删除操作时间复杂度为O(log_{2}n)

        ②在红黑树中删除结点的处理方式和“二叉排序树的删除”一样;

        ③按②删除结点后,可能破坏“红黑树特性”,此时需要调整结点颜色、位置,使其再次满足“红黑树特性”。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值