目录
一、红黑树基本概念
1.缘起
由于平衡二叉树AVL的插入删除操作很容易破坏平衡特性,需要频繁调整树的形态。即:插入操作导致不平衡,则需要先计算平衡因子,找到最小不平衡子树(时间开销大),再进行LL/RR/LR/RL调整。
而红黑树RBT的插入删除操作很多时候不会破坏“红黑”特性,无需频繁调整树的形态。即便是需要调整,一般都可以在常数级时间内完成。
所以在以查为主、很少进行插入删除操作时选择平衡二叉树;如需频繁插入删除时用红黑树实用性更强。
2.概念
(1)基本定义
红黑树是二叉排序树,即左子树结点值<=根结点值<=右子树结点值;
(2)结点结构体定义
struct RBnode { //红黑树的结点定义
int key; //关键字的值
RBnode* parent; //父结点指针
RBnode* lchild; //左孩子指针
RBnode* rchild; //右孩子指针
int color; //结点颜色,如可用0/1表示黑/红,也可用枚举型enum表示颜色
};
(3)基本要求
①每个结点或是红色,或是黑色;
②根结点是黑色的;
③叶结点均是黑色的;
④不存在两个相邻的红结点(即红结点的父结点和孩子结点均是黑色的);
⑤对每个结点,从该结点到任一叶结点的简单路径上,所含黑结点的数量相同;
总结顺口溜:左根右,根叶黑,不红红,黑路同。
(4)图示
(5)黑高
①结点的黑高bh——从某结点出发(不含该结点)到达任一空叶结点的路径上黑结点总数;
②根结点黑高为h的红黑树,内部结点数(关键字)至少有个,此时红黑树是“总共h层所有结点都是黑结点的满树形态”。
3.两个重要性质
(1)从根结点到叶结点的最长路径不大于最短路径的2倍;
(解释:从根结点到任一叶结点的路径都相同,但又要满足“不红红”,也就是极端情况为红结点穿插在每两个黑结点中间)
(2)有n个内部结点的红黑树高度;
4.时间复杂度
红黑树的查找操作的时间复杂度为。
二、红黑树的基本操作
1.查找
与BST、AVL相同,从根结点出发,左小右大,若查找到一个空叶结点,则查找失败;
2.插入
(1)先查找,确定插入位置(原理同二叉排序树),插入新结点;
(2)新结点是根结点的话,将其染为黑色;
(3)新结点不是根的话,将其染为红色:
①若插入新结点后依然满足红黑树的定义,则插入结束;
②若插入新结点后不满足红黑树定义,则需调整,调整的重点要看新结点叔叔的颜色:
Ⅰ叔叔黑色:旋转+染色
LL型:右单旋,父换爷+染色;
RR型:左单旋,父换爷+染色;
LR型:左、右双旋,儿换爷+染色;
RL型:右、左双旋,儿换爷+染色;
Ⅱ叔叔红色:染色+变新
叔、父、爷染色,爷变为新结点。
(4)补充解释:
①在插入一个新结点时,主要看其有没有违背“不红红”的性质即可;
②上述单旋双旋和二叉排序树、平衡二叉树中提到的旋转原理一样;
③上述的染色即颜色变换,原本是黑色就变红色,原本是红色就变黑色。
3.删除
①红黑树的删除操作时间复杂度为;
②在红黑树中删除结点的处理方式和“二叉排序树的删除”一样;
③按②删除结点后,可能破坏“红黑树特性”,此时需要调整结点颜色、位置,使其再次满足“红黑树特性”。