联邦学习学习笔记——在现有的Federated-Learning-PyTorch联邦学习框架中加入逻辑回归模型

框架来源 https://github.com/AshwinRJ/Federated-Learning-PyTorch

修复该框架的Bug参考下文

两种方法修复Federated-Learning-PyTorch中损失(Loss)为负的bug,以MLP模型为例。_MikingG的博客-CSDN博客https://blog.csdn.net/weixin_64123373/article/details/132254339

在baseline_main.py添加模型

    elif args.model == 'logistic':
        if args.dataset == 'mnist':
            global_model = LogisticRegression(28 * 28, 10)

表示我们将用逻辑回归对MNIST数据集进行分类

  • 28 * 28: 这是输入维度,对应于MNIST数据集中的图像大小(28像素宽,28像素高)。由于逻辑回归模型期望一个扁平化的输入,因此我们传递了28 * 28 = 784作为输入维度。

  • 10: 这是输出维度,对应于MNIST数据集的10个可能的数字类别(0到9)。

在model.py中定义逻辑回归模型

class LogisticRegression(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        out = self.linear(x)
        return out
  1. 定义类: class LogisticRegression(nn.Module): 定义了一个名为LogisticRegression的类,它继承自PyTorch的基础模块类nn.Module。所有自定义神经网络模型都应该继承自这个基类。

  2. 初始化方法: def __init__(self, input_dim, output_dim): 这是类的构造函数,当创建一个新的逻辑回归对象时,将调用此方法。它采用输入维度input_dim(对于MNIST来说是28*28)和输出维度output_dim(对于MNIST的10个类别来说是10)。

  3. 线性层的定义: self.linear = nn.Linear(input_dim, output_dim) 创建一个线性层,也称为全连接层。它将输入维度从input_dim映射到output_dim,在这个案例中,从784(28 * 28)映射到10。该层包含权重和偏差,将在训练过程中进行优化。

  4. 前向传播方法: def forward(self, x): 这是模型的前向传播方法。当输入数据通过网络时,将调用此方法。

  5. 重塑输入: x = x.view(-1, 28 * 28) 这行代码将输入数据x重塑为具有784个特征的二维张量。-1意味着该维度是由其他维度推断出来的,它确保张量的总数保持不变。这一步是必要的,因为MNIST的图像输入形状是[批量大小, 1, 28, 28],而线性层期望的输入形状是[批量大小, 784]。

  6. 线性转换: out = self.linear(x) 输入数据x通过线性层,输出out是一个[批量大小, 10]的张量,代表了每个类别的未归一化分数。

  7. 返回输出: return out 方法返回未归一化的输出分数。在使用此模型进行训练时会与交叉熵损失一起使用。

运行结果

附:完整代码

baseline_main.py完整代码

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6


from tqdm import tqdm
import matplotlib.pyplot as plt

import torch
from torch.utils.data import DataLoader

from utils import get_dataset
from options import args_parser
from update import test_inference
from models import MLP, CNNMnist, CNNFashion_Mnist, CNNCifar, LogisticRegression
# python src/baseline_main.py --model=logistic  --dataset=mnist --epochs=10
if __name__ == '__main__':
    # 从命令行中接受参数
    args = args_parser()
    # 决定代码将在 CPU 还是 GPU 上运行
    if args.gpu:
        torch.cuda.set_device(args.gpu)
    device = 'cuda' if args.gpu else 'cpu'

    # load datasets
    train_dataset, test_dataset, _ = get_dataset(args)

    # BUILD MODEL
    if args.model == 'cnn':
        # Convolutional neural netork
        if args.dataset == 'mnist':
            global_model = CNNMnist(args=args)
        elif args.dataset == 'fmnist':
            global_model = CNNFashion_Mnist(args=args)
        elif args.dataset == 'cifar':
            global_model = CNNCifar(args=args)
    elif args.model == 'mlp':
        # Multi-layer preceptron
        img_size = train_dataset[0][0].shape
        len_in = 1
        for x in img_size:
            len_in *= x
            global_model = MLP(dim_in=len_in, dim_hidden=64,
                               dim_out=args.num_classes)
    elif args.model == 'logistic':
        if args.dataset == 'mnist':
            global_model = LogisticRegression(28 * 28, 10)
    else:
        exit('Error: unrecognized model')

    # Set the model to train and send it to device.
    global_model.to(device)
    global_model.train()
    print(global_model)

    # Training
    # Set optimizer and criterion
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(global_model.parameters(), lr=args.lr,
                                    momentum=0.5)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(global_model.parameters(), lr=args.lr,
                                     weight_decay=1e-4)

    trainloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
    #criterion = torch.nn.NLLLoss().to(device)
    criterion = torch.nn.CrossEntropyLoss().to(device)
    epoch_loss = []

    for epoch in tqdm(range(args.epochs)):
        batch_loss = []

        for batch_idx, (images, labels) in enumerate(trainloader):
            images, labels = images.to(device), labels.to(device)

            optimizer.zero_grad()
            outputs = global_model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            if batch_idx % 50 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch+1, batch_idx * len(images), len(trainloader.dataset),
                    100. * batch_idx / len(trainloader), loss.item()))
            batch_loss.append(loss.item())

        loss_avg = sum(batch_loss)/len(batch_loss)
        print('\nTrain loss:', loss_avg)
        epoch_loss.append(loss_avg)

    # Plot loss
    plt.figure()
    plt.plot(range(len(epoch_loss)), epoch_loss)
    plt.xlabel('epochs')
    plt.ylabel('Train loss')
    plt.savefig('D:/大三上学习/暑假大创/代码/联邦学习框架Federated-Learning-PyTorch/save/nn_{}_{}_{}.png'.format(args.dataset, args.model,
                                                 args.epochs))

    # testing
    test_acc, test_loss = test_inference(args, global_model, test_dataset)
    print('Test on', len(test_dataset), 'samples')
    print("Test Accuracy: {:.2f}%".format(100*test_acc))

model.py完整代码

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6

from torch import nn
import torch.nn.functional as F


class MLP(nn.Module):
    def __init__(self, dim_in, dim_hidden, dim_out):
        super(MLP, self).__init__()
        self.layer_input = nn.Linear(dim_in, dim_hidden)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout()
        self.layer_hidden = nn.Linear(dim_hidden, dim_out)

    def forward(self, x):
        x = x.view(-1, x.shape[1] * x.shape[-2] * x.shape[-1])
        x = self.layer_input(x)
        x = self.dropout(x)
        x = self.relu(x)
        x = self.layer_hidden(x)
        return x


class CNNMnist(nn.Module):
    def __init__(self, args):
        super(CNNMnist, self).__init__()
        self.conv1 = nn.Conv2d(args.num_channels, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, args.num_classes)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, x.shape[1] * x.shape[2] * x.shape[3])
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


class CNNFashion_Mnist(nn.Module):
    def __init__(self, args):
        super(CNNFashion_Mnist, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7 * 7 * 32, 10)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


class CNNCifar(nn.Module):
    def __init__(self, args):
        super(CNNCifar, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, args.num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return F.log_softmax(x, dim=1)


class modelC(nn.Module):
    def __init__(self, input_size, n_classes=10, **kwargs):
        super(AllConvNet, self).__init__()
        self.conv1 = nn.Conv2d(input_size, 96, 3, padding=1)
        self.conv2 = nn.Conv2d(96, 96, 3, padding=1)
        self.conv3 = nn.Conv2d(96, 96, 3, padding=1, stride=2)
        self.conv4 = nn.Conv2d(96, 192, 3, padding=1)
        self.conv5 = nn.Conv2d(192, 192, 3, padding=1)
        self.conv6 = nn.Conv2d(192, 192, 3, padding=1, stride=2)
        self.conv7 = nn.Conv2d(192, 192, 3, padding=1)
        self.conv8 = nn.Conv2d(192, 192, 1)

        self.class_conv = nn.Conv2d(192, n_classes, 1)

    def forward(self, x):
        x_drop = F.dropout(x, .2)
        conv1_out = F.relu(self.conv1(x_drop))
        conv2_out = F.relu(self.conv2(conv1_out))
        conv3_out = F.relu(self.conv3(conv2_out))
        conv3_out_drop = F.dropout(conv3_out, .5)
        conv4_out = F.relu(self.conv4(conv3_out_drop))
        conv5_out = F.relu(self.conv5(conv4_out))
        conv6_out = F.relu(self.conv6(conv5_out))
        conv6_out_drop = F.dropout(conv6_out, .5)
        conv7_out = F.relu(self.conv7(conv6_out_drop))
        conv8_out = F.relu(self.conv8(conv7_out))

        class_out = F.relu(self.class_conv(conv8_out))
        pool_out = F.adaptive_avg_pool2d(class_out, 1)
        pool_out.squeeze_(-1)
        pool_out.squeeze_(-1)
        return pool_out


class LogisticRegression(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        out = self.linear(x)
        return out

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值