辗转相除法——求最大公约数(易懂详解)

定义

最大公因数:也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。

辗转相除法:欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

举例理解

比如现在要求这两个数 32,26的最大公约数,解法如下:

32/26=1...6  (此行除数26作下一行的被除数,余数作为除数)

26/6=4...2  (此行同理)

6/2=3...0  (此处余数为零,意味着最大公约数就是2)

反复把一个式子中的除数当作被除数去除余数,直到最后余数等于0。

最大公约数就是最后那个式子的除数,本例就是2。

C语言代码

#include <stdio.h>
int main()
{
	int u, v;
	scanf("%d %d", &u, &v);
	while (v != 0)
	{
		int tmp = u % v;
		u = v;
		v = tmp;
	}
	printf("%d", u);
	return 0;

}

Visual Studio 2022运行

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值