一、词频统计准备工作
单词计数是学习分布式计算的入门程序,有很多种实现方式,例如MapReduce;使用Spark提供的RDD算子可以更加轻松地实现单词计数。
在IntelliJ IDEA中新建Maven管理的Spark项目,在该项目中使用Scala语言编写Spark的WordCount程序,可以本地运行Spark项目查看结果,也可以将项目打包提交到Spark集群(Standalone模式)中运行。
(一)版本选择问题
前面创建了Spark集群(Standalone模式),采用的是Spark3.3.2版本
Spark3.3.2用的Scala库是2.13,但是Spark-Shell里使用的Scala版本是2.12.15
为了Spark项目打成jar包能够提交到这个Spark集群运行,本地就要安装Scala2.12.15
由于Spark项目要求Spark内核版本与Scala库版本(主版本.次版本)要保持一致,否则本地都无法运行项目。Spark3.2.0开始,要求Scala库版本就更新到了2.13,只有Spark3.1.3使用Scala库版本依然是2.12,因此Spark项目选择使用Spark3.1.3。
Spark项目如果基于JDK11,本地运行没有问题,但是打成Jar包提交到集群运行会报错
卸载之前在Windows上安装的Scala2.13.10
(二)安装Scala2.12.15
从Scala官网下载Scala2.12.15 - https://www.scala-lang.org/download/2.12.15.html
下载到本地
安装在默认位置
安装完毕
在命令行窗口查看Scala版本(必须要配置环境变量)
(三)启动集群的HDFS与Spark
启动HDFS服务
启动Spark集群
(四)在HDFS上准备单词文件
在master虚拟机上创建单词文件 - words.txt
将单词文件上传到HDFS指定目录/wordcount/input
二、本地模式运行Spark项目
(一)新建Maven项目
新建Maven项目,注意,要基于JDK8
设置项目信息(项目名称、保存位置、组编号以及产品编号)
单击【Finish】按钮
将java目录改成scala目录
重名为scala
源程序目录变成了scala
(二)添加项目相关依赖
在pom.xml文件里添加依赖,并告知源程序目录已改成scala
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>net.huawei.rdd</groupId>
<artifactId>SparkRDDWordCount</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.15</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId