【递增三元组】蓝桥杯第九届C++B组F题

题目描述:

在这里插入图片描述
在这里插入图片描述
解法一、暴力(超时)

代码(部分超时):

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;

const int N = 10010;
int n, ans;
int A[N], B[N], C[N];

int main() 
{
    scanf("%d",&n);
    for(int i = 1; i <= n; i ++) scanf("%d",&A[i]);
    for(int j = 1; j <= n; j ++) scanf("%d",&B[j]);
    for(int k = 1; k <= n; k ++) scanf("%d",&C[k]);

    for(int i = 1; i <= n; i ++) 
        for(int j = 1; j <= n; j ++) 
            for(int k = 1; k <= n; k ++) 
                if(A[i] < B[j] && B[j] < C[j]) 
                	ans++;
    cout << ans << endl;
    return 0;
}

解法二、排序+二分

既然是查找,那么可以考虑进行二分查找
二分的前提是单调序列,所以预先对a b c排序 直接sort
枚举B的所有元素+查找A,C中的元素时间复杂度也是O(nlog2n)

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long lld;
const int N = 100005;
int a[N], b[N], c[N];
int n;
lld sum;

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        scanf("%d", &a[i]);
    for (int i = 1; i <= n; i++)
        scanf("%d", &b[i]);
    for (int i = 1; i <= n; i++)
        scanf("%d", &c[i]);

    sort(a + 1, a + 1 + n);
    sort(b + 1, b + 1 + n);
    sort(c + 1, c + 1 + n);

    for (int i = 1; i <= n; i++)
    {
        //直接用STL中的两个二分函数解决
        lld x = ( lower_bound(a + 1, a + 1 + n, b[i]) - a ) - 1;     
        //在数组a中找比b[i]小的数
        lld y = n - ( upper_bound( c + 1, c + 1 + n, b[i]) - c ) + 1; 
        //在数组c中找比b[i]大的数
        sum += x * y;
    }

    printf("%lld", sum);
    return 0;
}

这里分析一下为什么x, y 这样写:

x=( lower_bound(a+1, a+1+n, b[i] ) - a )-1;

①lower_bound(a + 1, a + 1 + n, b[i] ) 返回a数组中第一个大于等于b[i]的地址
② lower_bound(a + 1, a + 1 + n, b[i] ) - a 返回a数组中第一个大于等于b[i]的下标
③因为要找的是a数组中第一个小于b[i]的,所以下标应当-1
④下标从1开始,找到的下标 = 这一段的元素个数

y=n-( upper_bound(c+1,c+1+n,b[i] )-c)+1;

①upper_bound( c + 1, c + 1 + n, b[i] ) 返回c数组中第一个大于b[i]的地址
②upper_bound( c + 1, c + 1 + n, b[i] ) - c 返回c数组中第一个大于b[i]的下标
③n - ( upper_bound( c + 1, c + 1 + n, b[i] ) - c ) + 1
把返回的下标记作x,则后一段的元素个数为n-x+1。

解法三、双指针

进一步对查找进行优化,对于排过序的数组A和B,寻找A中小于B[i]的元素的个数可以考虑双指针算法,因为每个指针最多移动n次,故查找的时间复杂度降到O(n)。查找C与查找A同理,只是找第一个大于B的位置。

AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e5+10;

int n;
int a[N], b[N], c[N];

signed main()
{
    cin>>n;
    for(int i=0;i<n;i++) scanf("%d", &a[i]);
    for(int i=0;i<n;i++) scanf("%d", &b[i]);
    for(int i=0;i<n;i++) scanf("%d", &c[i]);

    sort(a, a+n);
    sort(b, b+n);
    sort(c, c+n);

    LL res=0, l=0, r=0;
    for(int i=0; i<n; i++)
    {
        while(a[l]<b[i] && l<n) l++;
        while(c[r]<=b[i] && r<n) r++;
        res += (LL)l*(n-r);
    }
    cout<<res<<endl;
}

解法四、前缀和
待更新…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qing小星星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值