题目描述:
解法一、暴力(超时)
代码(部分超时):
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 10010;
int n, ans;
int A[N], B[N], C[N];
int main()
{
scanf("%d",&n);
for(int i = 1; i <= n; i ++) scanf("%d",&A[i]);
for(int j = 1; j <= n; j ++) scanf("%d",&B[j]);
for(int k = 1; k <= n; k ++) scanf("%d",&C[k]);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
for(int k = 1; k <= n; k ++)
if(A[i] < B[j] && B[j] < C[j])
ans++;
cout << ans << endl;
return 0;
}
解法二、排序+二分
既然是查找,那么可以考虑进行二分查找
二分的前提是单调序列,所以预先对a b c排序 直接sort
枚举B的所有元素+查找A,C中的元素时间复杂度也是O(nlog2n)
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long lld;
const int N = 100005;
int a[N], b[N], c[N];
int n;
lld sum;
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
scanf("%d", &b[i]);
for (int i = 1; i <= n; i++)
scanf("%d", &c[i]);
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n);
sort(c + 1, c + 1 + n);
for (int i = 1; i <= n; i++)
{
//直接用STL中的两个二分函数解决
lld x = ( lower_bound(a + 1, a + 1 + n, b[i]) - a ) - 1;
//在数组a中找比b[i]小的数
lld y = n - ( upper_bound( c + 1, c + 1 + n, b[i]) - c ) + 1;
//在数组c中找比b[i]大的数
sum += x * y;
}
printf("%lld", sum);
return 0;
}
这里分析一下为什么x, y 这样写:
x=( lower_bound(a+1, a+1+n, b[i] ) - a )-1;
①lower_bound(a + 1, a + 1 + n, b[i] ) 返回a数组中第一个大于等于b[i]的地址
② lower_bound(a + 1, a + 1 + n, b[i] ) - a 返回a数组中第一个大于等于b[i]的下标
③因为要找的是a数组中第一个小于b[i]的,所以下标应当-1
④下标从1开始,找到的下标 = 这一段的元素个数
y=n-( upper_bound(c+1,c+1+n,b[i] )-c)+1;
①upper_bound( c + 1, c + 1 + n, b[i] ) 返回c数组中第一个大于b[i]的地址
②upper_bound( c + 1, c + 1 + n, b[i] ) - c 返回c数组中第一个大于b[i]的下标
③n - ( upper_bound( c + 1, c + 1 + n, b[i] ) - c ) + 1
把返回的下标记作x,则后一段的元素个数为n-x+1。
解法三、双指针
进一步对查找进行优化,对于排过序的数组A和B,寻找A中小于B[i]的元素的个数可以考虑双指针算法,因为每个指针最多移动n次,故查找的时间复杂度降到O(n)。查找C与查找A同理,只是找第一个大于B的位置。
AC代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e5+10;
int n;
int a[N], b[N], c[N];
signed main()
{
cin>>n;
for(int i=0;i<n;i++) scanf("%d", &a[i]);
for(int i=0;i<n;i++) scanf("%d", &b[i]);
for(int i=0;i<n;i++) scanf("%d", &c[i]);
sort(a, a+n);
sort(b, b+n);
sort(c, c+n);
LL res=0, l=0, r=0;
for(int i=0; i<n; i++)
{
while(a[l]<b[i] && l<n) l++;
while(c[r]<=b[i] && r<n) r++;
res += (LL)l*(n-r);
}
cout<<res<<endl;
}
解法四、前缀和
待更新…