NumPy是一个Python库,用于进行科学计算。它提供了一个多维数组对象,以及许多用于操作数组的函数。NumPy是基于向量化的计算,可以用来执行高效的数值运算。
import numpy as np
一、创建数组
1.创建数组 np.array()
将 Python 列表、元组等序列转换成 NumPy 数组
列表
np.array(['a','b','c','d'])
# array(['a', 'b', 'c', 'd'], dtype='<U1')
np.array([[1,2,3],[4,5,6]])
# array([[1, 2, 3],
# [4, 5, 6]])
元组
np.array((1,2,3))
# array([1, 2, 3])
2.创建都为0的数组 np.zeros()
np.zeros(9)
# array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
np.zeros((2,5))
# array([[0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.]])
数组有两层矩阵,每个矩阵有5行3列,全部用零填充
np.zeros((2,5,3))
# array([[[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]],
# [[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]]])
3.创建都为1的数组 np.ones()
np.ones(5)
# array([1., 1., 1., 1., 1.])
4.创建指定范围内的数组 np.arange()
np.arange(4)
# array([0, 1, 2, 3])
array range 起始数字 终止数字 步长
np.arange(2,9,2)
# array([2, 4, 6, 8])
5.创建一个二维的单位矩阵数组 np.eye()
np.eye(3)
# array([[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]])
6.创建随机数组 np.random.rand()
该数组服从 正态分布
服从0到1之间的均匀分布
np.random.rand(2,3)
# array([[0.2107323 , 0.42571516, 0.92930785],
# [0.13908875, 0.11276862, 0.33512653]])
创建服从标准正态分布的数组 - - - numpy.random.randn()
均值为0,方差为1的分布
7.创建一维等差数组 np.linspace()
创建一个一维数组,包含从1到9之间,等间隔分为5个元素的数字序列,元素之间的间隔相等
np.linspace(1,9,5)
# array([1., 3., 5., 7., 9.])
np.linspace(2,7,3)
# array([2. , 4.5, 7. ])
二、数组的属性
1.形状 几行几列 维度 shape
a = np.array([[1, 2, 2], [1, 1, 1]])
a.shape # (2, 3) # 二维数组
np.shape(a) # (2, 3)
b = np.array([1, 2, 3])
b.shape # (3, ) # 一维数组
2.维数 ndim
a = np.array([[1, 2, 2], [1, 1, 1]])
a.ndim # 2 # 二维数组
3.数组中元素的总数 size
a = np.array([1, 2, 3, 4, 5])
a.size # 5 # a中有5个元素
4.数组中元素的数据类型 dtype
a = np.array([1, 2, 3, 4, 5])
a