2022-12-28 leetcode与蓝桥刷题情况

一、leetcode题目

1.删除字符串两端相同字符后的最短长度

题目描述
给你一个只包含字符 'a''b''c' 的字符串 s ,你可以执行下面这个操作(5 个步骤)任意次:

  1. 选择字符串 s 一个 非空 的前缀,这个前缀的所有字符都相同。
  2. 选择字符串 s 一个 非空 的后缀,这个后缀的所有字符都相同。
  3. 前缀和后缀在字符串中任意位置都不能有交集。
  4. 前缀和后缀包含的所有字符都要相同。
  5. 同时删除前缀和后缀。
  6. 请你返回对字符串 s 执行上面操作任意次以后(可能 0 次),能得到的 最短长度

(1)测试用例

输入:

s = “ca”
s = “cabaabac”
s = “aabccabba”

输出:

2
0
3

解释:

1.你没法删除任何一个字符,所以字符串长度仍然保持不变
2. 最优操作序列为:
选择前缀 “c” 和后缀 “c” 并删除它们,得到 s = “abaaba” 。
选择前缀 “a” 和后缀 “a” 并删除它们,得到 s = “baab” 。
选择前缀 “b” 和后缀 “b” 并删除它们,得到 s = “aa” 。
选择前缀 “a” 和后缀 “a” 并删除它们,得到 s = “” 。
3. 解释:最优操作序列为:
选择前缀 “aa” 和后缀 “a” 并删除它们,得到 s = “bccabb” 。
选择前缀 “b” 和后缀 “bb” 并删除它们,得到 s = “cca” 。

提示

  • 1 < = s . l e n g t h < = 1 0 5 1 <= s.length <= 10^5 1<=s.length<=105
  • s 只包含字符 'a''b''c'

(2)思路

双指针简单模拟咯。

(3)算法实现

class Solution {
    public int minimumLength(String s) {
        int left = 0, right = s.length()-1;
        while(left < right && s.charAt(left) == s.charAt(right)){
            char l = s.charAt(left), r = s.charAt(right);
            while(left < right && s.charAt(left) == l) left++;
            while(left-1 < right && s.charAt(right) == r) right--;
        }
        return right - left + 1;
    }
}

2.买卖股票的最佳时机 II

题目描述
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

(1)测试用例

输入:

prices = [7,1,5,3,6,4]

输出:

7

解释:

在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。

提示

  • 1 < = p r i c e s . l e n g t h < = 3 ∗ 1 0 4 1 <= prices.length <= 3 * 10^4 1<=prices.length<=3104
  • 0 < = p r i c e s [ i ] < = 1 0 4 0 <= prices[i] <= 10^4 0<=prices[i]<=104

(2)思路

本体也可继续使用贪心思想来解决问题,但主要想练习树形dp,本体使用动态规划来解。同于买卖股票的最佳时机1,同一时间只能买入一只股票。不同于买卖股票的最佳时机1,现在股票可以买卖多次来增加利润。首先想两者之间的区别,再修改其状态转移方程式即可。
状态表示:

  1. dp[i][0] 表示dp[i]阶段手中有股票的最大利润。
  2. dp[i][1] 表示dp[i]阶段手中没有股票的最大利润。

状态转移方程式:

  1. dp[i][0] = max(max(dp[i-1][0], -prices[i]), dp[i-1][1]-prices[i])外圈括号表示,在第一次买入股票和多次买入股票中取一个最大值。内圈括号表示,当前购买股票的花费与之前阶段购买股票的花费,取一个最小值(因为是负数,所以使用max)。
  2. dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]), 就是保持上阶段不持有股票的状态还是这阶段卖出股票,取一个最大值。

边界条件
dp[0][0] = -prices[0];
dp[0][1] = 0;

(3)算法实现

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < n; i++){
            dp[i][0] = Math.max(Math.max(dp[i-1][0], -prices[i]), dp[i-1][1]-prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
        }
        return dp[n-1][1];
    }
}

二、蓝桥题目(今天蓝桥摸了)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值