win10 64位 环境下 GPU N卡 GeForce 1050Ti,CUDA11.8 安装

因为要用colmap与nerf,如果有因为这两个软件而来的,也可以讨论。所以要配置CUDA,刚开始感觉很繁琐,但是回顾过程没那么麻烦,因此记录一下整个安装过程。

关于版本与电脑是否已经安装了CUDA版本可以询问Ai,因为电脑不同,显卡不同,以及更新会导致版本的对应略有不同,我目前1050Ti支持最高版本CUDA12.6,可以向下兼容的,但是低版本的GPU不太建议选择高版本的CUDA。

1.CUDA安装

CUDA安装从官网找即可,也可以单击CUDA11.8 CUDA Toolkit

这里引入一个B站安装视频https://www.bilibili.com/video/BV116eBefETi/?spm_id_from=333.1391.0.0&vd_source=2db9a1ab724444d004bc24139079f71ehttps://www.bilibili.com/video/BV116eBefETi/?spm_id_from=333.1391.0.0&vd_source=2db9a1ab724444d004bc24139079f71e这个视频里面提到visual stduio与CUDA的关系,我本身电脑安装了VS022,所以没有里面的那个问题。就按照提示双击.exe下载文件然后按步骤操作进行即可。在安装过程中还会遇到其他这样那样的问题,可以在评论区讨论。

关于是否安装成功可用win+R,输入cmd,然后输入即可查看。

2.下载安装cuDNN v8.6.0

这里需要创建一个英伟达的账号,按照要求填写即可正确下载。

然后将cudnn文件夹中的文件复制到cuda安装路径下就OK。

<think>嗯,用户想知道NVIDIA GeForce RTX 2070显适配CUDA 11.6和11.8哪个更好。首先,我需要确认RTX 2070的GPU算力,因为CUDA版本必须支持该算力。根据引用[2]提到的GPU算力查询,RTX 20系列通常算力是7.5,比如RTX 2080 Ti是7.5,所以推测2070也是7.5。接下来,查阅CUDA各版本支持的算力范围。比如,CUDA 11.x通常支持算力3.5到8.x,所以11.6和11.8应该都支持7.5,没问题。 然后,用户可能关心兼容性,特别是深度学习框架的支持。引用[2]提到,很多框架如PyTorch或TensorFlow可能不兼容最新CUDA版本,推荐稳定的旧版本。比如,CUDA 11.6被广泛支持,而11.8可能较新,社区支持可能不够。比如PyTorch 1.12.1支持CUDA 11.6,但可能还没适配11.8,所以用户需要检查框架的文档。 另外,驱动版本的兼容性也很重要。根据引用[5],CUDA 11.6需要驱动版本510.39.01,而CUDA 11.8可能需要更高的驱动。用户需要确认当前驱动是否支持目标CUDA版本,或者是否需要更新驱动。使用nvidia-smi命令查看驱动版本和支持的CUDA版本(引用[4]),比如如果显示支持11.8,那就可以安装,否则可能需要升级驱动。 还要考虑用户的具体应用场景。如果用户需要使用特定软件或库,比如某些研究项目依赖CUDA 11.6,那必须选择11.6。反之,如果项目需要新特性或优化,可能需要11.8。但根据引用[3],CUDA 11.6在Ubuntu环境下搭配3060显可行,说明其稳定性。 清理旧版本的问题也不可忽视,引用[1]提到如何清理旧CUDA版本,避免冲突。用户如果之前安装过其他版本,需要正确卸载或手动清理。 总结起来,推荐CUDA 11.6,因为更稳定且框架支持更好,而11.8可能适合需要新功能的用户,但需自行验证兼容性。同时,用户需要根据驱动版本和项目需求做决定。</think>### NVIDIA GeForce RTX 2070 适配 CUDA 11.6 与 11.8 的对比及推荐 #### 1. **硬件兼容性分析** - **RTX 2070 的 GPU 算力**:根据 NVIDIA 官方数据,RTX 2070 的算力为 $7.5$(基于 Turing 架构)[^3]。 - **CUDA 版本支持范围**: - **CUDA 11.6**:支持算力 $3.5 \le \text{算力} \le 8.6$[^2]。 - **CUDA 11.8**:支持算力 $3.5 \le \text{算力} \le 8.9$。 - **结论**:两者均完全支持 RTX 2070 的算力 $7.5$。 #### 2. **驱动与框架兼容性** - **驱动版本需求**: - **CUDA 11.6**:需搭配驱动版本 $\ge 510.39.01$[^5]。 - **CUDA 11.8**:需驱动版本 $\ge 520.00$(具体版本需查询 NVIDIA 官网)。 - **深度学习框架适配**: - **CUDA 11.6**:广泛兼容 PyTorch、TensorFlow 等主流框架(如 PyTorch 1.12.1 明确支持 CUDA 11.6)。 - **CUDA 11.8**:较新版本,可能面临部分框架未适配的风险(需手动验证)。 #### 3. **推荐版本** - **优先选择 CUDA 11.6**: - **稳定性**:社区支持更成熟,工具链兼容性已验证。 - **维护性**:旧版本清理方法明确(通过控制面板或脚本删除残留文件)[^1]。 - **特殊场景选择 CUDA 11.8**: - 需使用 CUDA 11.8 独占功能(如特定优化库)。 - 确认驱动版本已升级至 $\ge 520.00$,并通过 `nvidia-smi` 验证支持性[^4]。 #### 4. **操作步骤验证** 1. 查看当前驱动版本: ```bash nvidia-smi # 输出右上角显示 Driver Version 和 CUDA Version ``` 2. 若需清理旧版本: ```bash rmdir /s /q "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6" # Windows 示例[^1] ``` 3. 安装 CUDA 11.6: ```bash wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run # Linux 示例 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值