本节主要介绍了顺序查找的思想、ASL的计算以及算法详解。
介绍了折半查找的具体步骤、算法的执行步骤图解演示代码详解、折半查找的算法分析、判定树、查找成功与不成功的ASL的计算以及相关的例题。
具体两个代码如下:
#顺序表的顺序查找算法
def SeqSearch1(R,k):#R是顺序表,k是顺序查找所要的值
n=len(R)
i=0
while i<n and R[i]!=k:i+=1#从0号位置开始遍历每一个元素,如果这个元素不等于要查找的值,那么指针后移一位去判断下一个元素
if i>=n:return -1#如果指针指到了最后元素标号的后面即到了n,就返回没有找到
else:return i#否则就是找到了,返回元素的序号值
#加一个哨兵来判断遍历的终止,一旦访问到哨兵,循环就停止,没访问到哨兵,循环就不停止
def SeqSearch2(R,k):
n=len(R)
R.append(k)#最后添加的元素是哨兵,哨兵的值设置为了要查找的元素本身
i=0
while R[i]!=k:i+=1
if i == n:return -1#如果到了最后一个元素后一个位置还没有找到要找的字符,那就说明没有找到,返回-1,因为哨兵是本身,所以这里要再比较一次
else:return i
#两个算法的元素的比较次数可能不同:当查找成功的时候元素的比较次数是相同的,但是一旦越界,有哨兵的就要与哨兵的值再比较一次,多了一次比较。
#顺序表的折半查找
def BinSearch1(R,k):
n=len(R)
while low<=high:#只要low<=high循环就进行,当low>high循环就停止。
#如果改成low<high的判断语句的话,可能找不到要找的值,也就是遗漏
#如果改成low<high,那么最后还要添加一句:if R[low]==k:return low,为什么要判断low,因为mid始终是取下整的,所以要判断最后的low
mid=(low+high)//2
if k==R[mid]:
return mid
if k<R[mid]:
high=mid-1
else:
low=mid+1
return -1#找不到就return -1