定义:就是将多个不同对象的指标或者一个对象的不同时间的指标放在一起进行比较
分类:绝对数比较、相对数比较,两者的主要区别是展示的数前者是什么数就展示什么数,后者展示的是经过处理比较的数
绝对数比较
和前面讲过的一般的统计图的制作差不多,要制作这样的一个绝对数分析的话,基本上要从原来的xls文件里面直接建就ok了
相对数比较
相对数比较重点在于以何种方法算出这个相对数,一般根据计算的方法把相对数的比较分为以下几类
结构相对数比较:部分/整体
比例相对数比较:每一部分的比例单拿出来一个个对比
比较相对数比较:体现相同内容的数值进行比较
强度相对数比较:有点复合单位的意思,就是通过几种数构造出复合单位,然后复合单位进行比较
计划完成程度相对数比较:这个有点太细了,就是已完成的项目数/计划完成的项目数
动态相对数:以时间为轴,看每个时期某一指标的发展情况
其中作图主要用matplotlib里面的pyplot库,具体的作图的系统过程请见如下链接:
https://blog.csdn.net/wswguilin/article/details/126056886?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167850232416800188520588%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167850232416800188520588&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-126056886-null-null.142^v73^insert_down1,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=pyplot&spm=1018.2226.3001.4187
https://blog.csdn.net/wswguilin/article/details/126056886?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167850232416800188520588%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167850232416800188520588&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-126056886-null-null.142^v73^insert_down1,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=pyplot&spm=1018.2226.3001.4187
我遇到的问题:
不了解plot函数的使用方法
解决方法:
https://blog.csdn.net/weixin_46098577/article/details/119520546?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167850280816782425181382%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167850280816782425181382&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-119520546-null-null.142^v73^insert_down1,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=plot%E5%87%BD%E6%95%B0&spm=1018.2226.3001.4187
https://blog.csdn.net/weixin_46098577/article/details/119520546?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167850280816782425181382%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167850280816782425181382&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-119520546-null-null.142^v73^insert_down1,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=plot%E5%87%BD%E6%95%B0&spm=1018.2226.3001.4187
具体的代码展现:
# -*- coding: utf-8 -*-
# 代码3-5 不同部门在各月份的销售对比情况
# 部门之间销售金额比较
import pandas as pd#导入pandas库,并用pd标记pandas库
import matplotlib.pyplot as plt#导入matplotlib里面的pyplot库,并且用plt标记pyplot库
data=pd.read_excel("D:\DataMiningCode\chapter3\demo\data\dish_sale.xls")#用data标记读到的excel文件
plt.figure(figsize=(8, 4))#设置画布大小
plt.plot(data['月份'], data['A部门'], color='green', label='A部门',marker='o')#用pyplot中的plot方法构图,其中前两个位置体现自变量与因变量,
#前一个是自变量,后一个是因变量,这里自变量与因变量都是两个矩阵(应该是),clolor表示颜色你label体现标签,marker体现自变量因变量生成的点的形状,
#具体哪个符号标记哪种点,请见博客
plt.plot(data['月份'], data['B部门'], color='red', label='B部门',marker='s')
plt.plot(data['月份'], data['C部门'], color='skyblue', label='C部门',marker='x')
plt.legend() # 显示图例,这里就是显示label='A部门',label='B部门',label='C部门'
plt.ylabel('销售额(万元)')#
plt.rcParams['font.sans-serif']='SimHei'#SimHei表示黑体,当然还有其他的字体,具体请见这章的博客
plt.show()#展示整个图
# B部门各年份之间销售金额的比较
data=pd.read_excel("D:\DataMiningCode\chapter3\demo\data/dish_sale_b.xls")
plt.figure(figsize=(8, 4))
plt.plot(data['月份'], data['2012年'], color='green', label='2012年',marker='o')
plt.plot(data['月份'], data['2013年'], color='red', label='2013年',marker='s')
plt.plot(data['月份'], data['2014年'], color='skyblue', label='2014年',marker='x')
plt.legend() # 显示图例
plt.ylabel('销售额(万元)')
plt.show()
运行结果展示:
