基于Deeplabv3模型实现自动驾驶车辆的实时对象检测

该团队使用计算机视觉和英特尔AI分析工具套件,为自动驾驶车辆开发实时对象检测模型。采用deeplabv3模型实现语义分割,利用英特尔相关工具和OneAPI提升训练速度和优化模型。介绍了数据预处理、各模块实现、训练过程及结果,平均像素交并比达0.954983232183881等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

团队名称

Intel启动队

问题陈述

使用计算机视觉技术和英特尔® AI 分析工具套件为自动驾驶车辆开发实时对象检测模型。参赛团队需要创建一个深度学习模型,用于准确检测行人、车辆、交通标志和交通信号等对 象。该模型需要具有高准确度和低延迟,能够满足自动驾驶车辆安全导航的需求。

项目简介

本项目采用了deeplabv3模型,通过以下步骤实现了语义分割。

  1. 数据预处理
  2. ResNet部分提取输入图像特征
  3. ASPP模块利用上下文信息丰富特征
  4. DeeplabV3将两部分结合,完成语义分割预测任务

至此,已实现从视频或图象中分割道路、交通标志、车辆等,识别环境,为自动驾驶提供技术支持。

相关技术

在编写程序的过程中,我们使用了英特尔® AI 分析工具套件及其中的适当组件

  1. 使用英特尔® DNN for PyTorch 提高训练速度:DNN for PyTorch可以利用硬件加速来提升卷积计算速度,从而缩短Deeplabv3的训练时间。
  2. 使用英特尔® Video Profiler分析模型:Video Profiler可以对Deeplabv3的计算图各环节进行性能分析,识别瓶颈层次以优化模型。

与传统的CUDA编程模型相比,OneAPI具有以下优势:

  1. 跨平台支持:OneAPI支持多种硬件架构,包括英特尔CPU、GPU和FPGA等。这使得开发人员可以使用统一的编程模型在不同的硬件上进行开发,并实现高性能计算。
  2. 硬件无关性:OneAPI提供了抽象层,使开发人员能够以硬件无关的方式编写代码。这意味着你可以使用相同的代码在不同的硬件上运行,而无需为每个硬件架构编写特定的实现。
  3. 统一编程模型:OneAPI采用了基于数据并行性的编程模型,通过使用语言扩展和库来支持并行计算。这使得开发人员可以在不同的硬件上实现并行计算,而无需学习和使用不同的编程模型。
  4. 生态系统支持:OneAPI具有丰富的生态系统支持,包括编译器、调试器、性能分析工具和优化库等。这些工具和库可以帮助开发人员提高代码的性能,并简化调试和优化的过程。
  5. 开放标准:OneAPI是一个开放的标准,由多个硬件和软件供应商支持。这意味着你可以在不同的供应商之间进行选择,并且不会受限于特定供应商的硬件或软件。

通过调用oneAPI,我们将模型和优化器搬移到IPU上训练,不再需要手动管理设备,IPU能力足够强大,利用IPU神经网络加速功能提升训练速度。具体实现步骤如下:

#导入Intel Extension for PyTorch:
import intel_extension_for_pytorch as ipex


#对网络和优化器进行IPU优化:
network.train()  
network = ipex.optimize(model=network, optimizer=optimizer)


#屏蔽掉了原PyTorch版本的优化器,使用IPU优化后的版本:
optimizer = torch.optim.Adam(params = network.parameters(), lr=0.003)

实现了基于OneAPI的高效深度学习训练流程。

团队收获

我们学会了使用oneAPI进行性能优化:

oneAPI 提供了一系列的工具和库,用于分析和优化代码的性能。例如,使用 Intel® VTune™ Profiler 可以分析代码的性能瓶颈,并提供优化建议。通过使用这些性能优化工具,你可以学习如何识别和解决性能瓶颈,优化算法和数据结构,提高代码的执行效率和响应速度。

我们学会了使用oneAPI进行深度学习模型训练:

oneAPI 提供了一些,如 Intel® oneAPI Deep Neural Network Library 等的深度学习和神经网络的库和工具。在使用Intel® oneAPI Deep Neural Network Library的过程中,我们学习了如何构建、训练和部署深度学习模型,以及如何优化模型的推理性能。

实现方案

数据预处理

Cityscapes数据集提供了34种分类,但在某些情况下,我们可能只对其中的一部分分类感兴趣。在默认情况下,Cityscapes数据集使用19个训练ID(trainId)进行图像语义分割训练。

训练ID(trainId)是为了方便训练而设计的一种标识符,它将原始标签中的34个分类映射到19个分类的集合。这样做的目的是减少训练中的计算复杂性,并提高模型的性能。

因此,这里的trainId代表了19个分类中的每个类别的标识符,用于Cityscapes数据集的图像语义分割任务。

映射关系(id->trainId):
labels = [
    #       name                     id    trainId   category            catId     hasInstances   ignoreInEval   color
    Label(  'unlabeled'            ,  0 ,      19 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'ego vehicle'          ,  1 ,      19 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'rectification border' ,  2 ,      19 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'out of roi'           ,  3 ,      19 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'static'               ,  4 ,      19 , 'void'            , 0       , False        , True         , (  0,  0,  0) ),
    Label(  'dynamic'              ,  5 ,      19 , 'void'            , 0       , False        , True         , (111, 74,  0) ),
    Label(  'ground'               ,  6 ,      19 , 'void'            , 0       , False        , True         , ( 81,  0, 81) ),
    Label(  'road'                 ,  7 ,        0 , 'flat'            , 1       , False        , False        , (128, 64,128) ),
    Label(  'sidewalk'             ,  8 ,        1 , 'flat'            , 1       , False        , False        , (244, 35,232) ),
    Label(  'parking'              ,  9 ,      19 , 'flat'            , 1       , False        , True         , (250,170,160) ),
    Label(  'rail track'           , 10 ,      19 , 'flat'            , 1       , False        , True         , (230,150,140) ),
    Label(  'building'             , 11 ,        2 , 'construction'    , 2       , False        , False        , ( 70, 70, 70) ),
    Label(  'wall'                 , 12 ,        3 , 'construction'    , 2       , False        , False        , (102,102,156) ),
    Label(  'fence'                , 13 ,        4 , 'construction'    , 2       , False        , False        , (190,153,153) ),
    Label(  'guard rail'           , 14 ,   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值