P2872 [USACO07DEC]Building Roads S
题目描述
Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.
Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (Xi, Yi) on the plane (0 ≤ Xi ≤ 1,000,000; 0 ≤ Yi ≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.
给定 � n 个点的坐标,第 � i 个点的坐标为 (��,��)( xi, yi),这 � n 个点编号为 11 到 � n。给定 � m 条边,第 � i 条边连接第 �� ui 个点和第 �� vi 个点。现在要求你添加一些边,并且能使得任意一点都可以连通其他所有点。求添加的边的总长度的最小值。
输入格式
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Two space-separated integers: Xi and Yi
* Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.
第一行两个整数 �,� n, m 代表点数与边数。
接下来 � n 行每行两个整数 ��,�� xi, yi 代表第 � i 个点的坐标。
接下来 � m 行每行两个整数 ��,�� ui, vi 代表第 � i 条边连接第 �� ui 个点和第 �� vi 个点。
输出格式
* Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.
一行一个实数代表添加的边的最小长度,要求保留两位小数,为了避免误差, 请用 6464 位实型变量进行计算。
输入输出样例
输入 #1复制
4 1 1 1 3 1 2 3 4 3 1 4
输出 #1复制
4.00
说明/提示
数据规模与约定
对于 100%100% 的整数,1≤�,�≤10001≤ n, m≤1000,1≤��,��≤1061≤ xi, yi≤106,1≤��,��≤�1≤ ui, vi≤ n。
说明
Translated by 一只书虫仔。
最小生成树问题,采用了kruscal算法。
大部分都和kruscal的模板题差不多但是需要注意的是,当读入已知边的时候,我们要将这两点的距离设置为0。
代码如下:
#include"stdio.h"
#include"math.h"
int n,m,f[10005];
char b[10005][10005];
struct node
{
int x;
int y;
}e[10005];
struct no
{
int u;
int v;
double w;
}a[10005];
int find(int v)
{
if(f[v]==v) return v;
return f[v]=find(f[v]);
}
int hb(int v,int u)
{
int t1,t2;
t1=find(v);
t2=find(u);
if(t1!=t2)
{
f[t2]=t1;
return 1;
}
return 0;
}
double min(double a,double b)
{
if(a<b) return a;
return b;
}
double jl(struct node a,struct node b)
{
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y));
}
int sort(int left,int right)
{
if(left>=right) return 0;
int i=left,j=right;
struct no t,k=a[left];
while(i<j)
{
while(i<j&&k.w<=a[j].w) j--;
while(i<j&&k.w>=a[i].w) i++;
if(i<j)
{
t=a[i];a[i]=a[j];a[j]=t;
}
}
a[left]=a[i];
a[i]=k;
sort(left,i-1);
sort(i+1,right);
}
int fun(int k)
{
int i,j,num=1;
double sum=0;
for(i=0;i<k;i++)
{
if(hb(a[i].u,a[i].v))
{
sum+=a[i].w;
num++;
if(num>n) break;
}
}
printf("%.2f",sum);
return 0;
}
main()
{
int i,j,u,v,k=0;
scanf("%d %d",&n,&m);
for(i=1;i<=n;i++)
{
f[i]=1;
scanf("%d %d",&e[i].x,&e[i].y);
}
for(i=0;i<m;i++)
{
scanf("%d %d",&u,&v);
hb(u,v);
}
for(i=1;i<=n;i++)
{
for(j=1;j<i;j++)
{
a[k].u=i;
a[k].v=j;
a[k].w=jl(e[i],e[j]);
k++;
}
}
sort(0,k-1);
fun(k);
}
P1991 无线通讯网
题目描述
国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;
每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。
任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 � D,这是受收发器的功率限制。收发器的功率越高,通话距离 � D 会更远,但同时价格也会更贵。
收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 � D。你的任务是确定收发器必须的最小通话距离 � D,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。
输入格式
从 wireless.in 中输入数据第 1 行,2 个整数 � S 和 � P,� S 表示可安装的卫星电话的哨所数,� P 表示边防哨所的数量。接下里 � P 行,每行两个整数 �,� x, y 描述一个哨所的平面坐标 (�,�)( x, y),以 km 为单位。
输出格式
输出 wireless.out 中
第 1 行,1 个实数 � D,表示无线电收发器的最小传输距离,精确到小数点后两位。
输入输出样例
输入 #1复制
2 4 0 100 0 300 0 600 150 750
输出 #1复制
212.13
说明/提示
对于 20%20% 的数据:�=2,�=1 P=2, S=1
对于另外 20%20% 的数据:�=4,�=2 P=4, S=2
对于 100%100% 的数据保证:1≤�≤1001≤ S≤100,�<�≤500 S< P≤500,0≤�,�≤100000≤ x, y≤10000。
该题也是最小生成树问题,同样我采用了kruscal的算法。
不同的是,之前我们做最小生成树的模板问题时,是遇见n-1条边时就可以退出了,但是这里的退出条件变成了p-s。
在这个最小生成树中,最远的两点距离要根据s的数量,也就是说输出最小生成树里面边的排序第p-s条边的长度。因为s个可用电话,其他的都要用收发器,收发器的最大距离要能涵盖所有,最长的边要选用电话,这才是最优的方法。
代码如下:
#include"stdio.h"
#include"math.h"
int f[100005],a[100005],b[100005];
int s,p,n,k;
double ans;
struct node
{
double x,y,z;
}e[1000005];
int sort(int left,int right)
{
int i=left,j=right;
struct node t,k=e[left];
if(left>=right) return 0;
while(i<j)
{
while(i<j&&k.z<=e[j].z) j--;
while(i<j&&k.z>=e[i].z) i++;
if(i<j)
{
t=e[i];e[i]=e[j];e[j]=t;
}
e[left]=e[i];
e[i]=k;
sort(left,i-1);
sort(i+1,right);
}
}
int find(int x)
{
if(x!=f[x])
f[x]=find(f[x]);
return f[x];
}
void hb(int x,int y)
{
int t1,t2;
t1=find(x);
t2=find(y);
f[t1]=t2;
}
main()
{
int i,j;
scanf("%d %d",&s,&p);
for(i=1;i<=p;i++)
{
scanf("%d %d",&a[i],&b[i]);
for(j=1;j<i;j++)
{
n++;
e[n].z=sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
e[n].x=i;
e[n].y=j;
}
}
for(i=1;i<=p;i++)
{
f[i]=i;
}
sort(1,n);
for(i=1;i<=n;i++)
{
if(find(e[i].x)!=find(e[i].y))
{
hb(e[i].x,e[i].y);
ans=e[i].z;
k++;
if(k>=p-s)
{
printf("%.2lf",ans);
return 0;
}
}
}
}