目录
1.什么是二叉搜索树?
二叉搜索树(BST,Binary Search Tree), 也称二叉排序树或二叉查找树
二叉搜索树:一棵二叉树,可以为空;如果不为空,满足以下性质:
1. 非空左子树的所有键值小于其根结点的键值。
2. 非空右子树的所有键值大于其根结点的键值。
3. 左、右子树都是二叉搜索树。
二叉搜索树操作的特别函数:
Position Find( ElementType X, BinTree BST ):从二叉搜索树BST 中查找元素X,返回其所在结点的地址;
Position FindMin( BinTree BST ):从二叉搜索树BST中查找并返回 最小元素所在结点的地址;
Position FindMax( BinTree BST ) :从二叉搜索树BST中查找并返回 最大元素所在结点的地址。
BinTree Insert( ElementType X, BinTree BST )
BinTree Delete( ElementType X, BinTree BST )
2.二叉搜索树的查找
查找从根结点开始,如果树为空,返回NULL;
若搜索树非空,则根结点关键字和X进行比较,并进行不同处理:
若X小于根结点键值,只需在左子树中继续搜索;
如果X大于根结点的键值,在右子树中进行继续搜索;
若两者比较结果是相等,搜索完成,返回指向此结点的指针。
2.1尾递归
Position Find( ElementType X, BinTree BST )
{
if( !BST ) return NULL; /*查找失败*/
if( X > BST->Data )
return Find( X, BST->Right ); /*在右子树中继续查找*/
else if( X < BST->Data )
return Find( X, BST->Left ); /*在左子树中继续查找*/
else /* X == BST->Data */
return BST; /*查找成功,返回结点的找到结点的地址*/
}
2.2非尾递归
由于非递归函数的执行效率高,可将“尾递归”函数改为迭代函数
Position IterFind( ElementType X, BinTree BST )
{
while( BST ) {
if( X > BST->Data )
BST = BST->Right; /*向右子树中移动,继续查找*/
else if( X < BST->Data )
BST = BST->Left; /*向左子树中移动,继续查找*/
else /* X == BST->Data */
return BST; /*查找成功,返回结点的找到结点的地址*/
}
return NULL; /*查找失败*/
}
3.查找最大和最小元素
最大元素一定是在树的最右分枝的端结点上
最小元素一定是在树的最左分枝的端结点上
3.1尾递归
Position FindMin( BinTree BST )
{
if( !BST ) return NULL; /*空的二叉搜索树,返回NULL*/
else if( !BST->Left )
return BST; /*找到最左叶结点并返回*/
else
return FindMin( BST->Left ); /*沿左分支继续查找*/
}
Position FindMax( BinTree BST, Position max )
{
if( !BST ) return max; /* 空的二叉搜索树,返回当前最大值 */
else if( !BST->Right )
return BST; /* 找到最右叶结点并返回 */
else
return FindMax( BST->Right, BST->Right ); /* 沿右分支继续查找 */
}
3.2非尾递归
Position FindMin(BinTree BST)
{
while (BST && BST->Left)
BST = BST->Left;
/* 沿左分支继续查找,直到最左叶结点 */
return BST;
}
Position FindMax( BinTree BST )
{
if(BST )
while( BST->Right ) BST = BST->Right;
/*沿右分支继续查找,直到最右叶结点*/
return BST;
}
4.二叉搜索树的插入
关键是要找到元素应该插入的位置, 可以采用与查找类似的方法
/* 插入函数 */
BinTree Insert(ElementType X, BinTree BST) {
if (!BST) {
/* 如果树为空,生成并返回一个新的节点 */
BST = malloc(sizeof(struct TreeNode));
if (BST == NULL) {
fprintf(stderr, "Out of memory!\n");
exit(1);
}
BST->Data = X;
BST->Left = BST->Right = NULL;
} else if (X < BST->Data) {
/* 递归插入到左子树 */
BST->Left = Insert(X, BST->Left);
} else if (X > BST->Data) {
/* 递归插入到右子树 */
BST->Right = Insert(X, BST->Right);
}
/* 如果X已经存在于树中,什么都不做 */
return BST;
}
5.二叉搜索树的删除
考虑三种情况:
一. 要删除的是叶结点:直接删除,并再修改其父结点指针---置为NULL
〖例〗:删除 35
二. 要删除的结点只有一个孩子结点: 将其父结点的指针指向要删除结点的孩子结点
〖例〗:删除 33
三. 要删除的结点有左、右两棵子树: 用另一结点替代被删除结点:右子树的最小元素 或者 左子树的最大元素
〖例〗:删除 41
/* 删除函数 */
BinTree Delete(ElementType X, BinTree BST) {
Position Tmp;
if (!BST) {
printf("要删除的元素未找到\n");
} else if (X < BST->Data) {
/* 左子树递归删除 */
BST->Left = Delete(X, BST->Left);
} else if (X > BST->Data) {
/* 右子树递归删除 */
BST->Right = Delete(X, BST->Right);
} else {
/* 找到要删除的结点 */
if (BST->Left && BST->Right) {
/* 被删除结点有左右两个子结点 */
Tmp = FindMin(BST->Right);
/* 在右子树中找最小的元素填充删除结点 */
BST->Data = Tmp->Data;
/* 在删除结点的右子树中删除最小元素 */
BST->Right = Delete(BST->Data, BST->Right);
} else {
/* 被删除结点有一个或无子结点 */
Tmp = BST;
if (!BST->Left) {
/* 有右孩子或无子结点 */
BST = BST->Right;
} else if (!BST->Right) {
/* 有左孩子或无子结点 */
BST = BST->Left;
}
free(Tmp);
}
}
return BST;
}
完整代码示例
#include <stdio.h>
#include <stdlib.h>
/* 定义二叉树节点结构体 */
struct TreeNode {
int Data;
struct TreeNode *Left;
struct TreeNode *Right;
};
typedef struct TreeNode* BinTree;
typedef struct TreeNode* Position;
typedef int ElementType;
/* 查找函数(递归) */
Position Find(ElementType X, BinTree BST) {
if (!BST) {
return NULL;
} else if (X < BST->Data) {
return Find(X, BST->Left);
} else if (X > BST->Data) {
return Find(X, BST->Right);
} else {
return BST;
}
}
/* 查找函数(迭代) */
Position FindIterative(ElementType X, BinTree BST) {
while (BST) {
if (X < BST->Data) {
BST = BST->Left;
} else if (X > BST->Data) {
BST = BST->Right;
} else {
return BST;
}
}
return NULL;
}
/* 查找最小值节点 */
Position FindMin(BinTree BST) {
while (BST && BST->Left)
BST = BST->Left;
return BST;
}
/* 插入函数 */
BinTree Insert(ElementType X, BinTree BST) {
if (!BST) {
BST = malloc(sizeof(struct TreeNode));
if (BST == NULL) {
fprintf(stderr, "内存分配失败!\n");
exit(1);
}
BST->Data = X;
BST->Left = BST->Right = NULL;
} else if (X < BST->Data) {
BST->Left = Insert(X, BST->Left);
} else if (X > BST->Data) {
BST->Right = Insert(X, BST->Right);
}
return BST;
}
/* 删除函数 */
BinTree Delete(ElementType X, BinTree BST) {
Position Tmp;
if (!BST) {
printf("要删除的元素未找到\n");
} else if (X < BST->Data) {
BST->Left = Delete(X, BST->Left);
} else if (X > BST->Data) {
BST->Right = Delete(X, BST->Right);
} else {
if (BST->Left && BST->Right) {
Tmp = FindMin(BST->Right);
BST->Data = Tmp->Data;
BST->Right = Delete(BST->Data, BST->Right);
} else {
Tmp = BST;
if (!BST->Left) {
BST = BST->Right;
} else if (!BST->Right) {
BST = BST->Left;
}
free(Tmp);
}
}
return BST;
}
/* 打印树(中序遍历) */
void PrintTree(BinTree BST) {
if (BST != NULL) {
PrintTree(BST->Left);
printf("%d ", BST->Data);
PrintTree(BST->Right);
}
}
/* 主函数,测试各种操作 */
int main() {
BinTree tree = NULL;
/* 插入节点 */
tree = Insert(10, tree);
tree = Insert(5, tree);
tree = Insert(15, tree);
tree = Insert(3, tree);
tree = Insert(7, tree);
tree = Insert(12, tree);
tree = Insert(18, tree);
printf("插入节点后的树(中序遍历):");
PrintTree(tree);
printf("\n");
/* 查找节点 */
Position foundNode = Find(7, tree);
if (foundNode) {
printf("递归查找,找到节点值为:%d\n", foundNode->Data);
} else {
printf("递归查找,节点值为7未找到。\n");
}
foundNode = FindIterative(12, tree);
if (foundNode) {
printf("迭代查找,找到节点值为:%d\n", foundNode->Data);
} else {
printf("迭代查找,节点值为12未找到。\n");
}
/* 删除节点 */
tree = Delete(10, tree);
printf("删除10后的树(中序遍历):");
PrintTree(tree);
printf("\n");
tree = Delete(5, tree);
printf("删除5后的树(中序遍历):");
PrintTree(tree);
printf("\n");
/* 再次插入和删除以验证 */
tree = Insert(10, tree);
tree = Insert(5, tree);
tree = Insert(20, tree);
printf("重新插入后的树(中序遍历):");
PrintTree(tree);
printf("\n");
tree = Delete(14, tree);
printf("尝试删除14(未找到)的树(中序遍历):");
PrintTree(tree);
printf("\n");
/* 结束 */
return 0;
}
示例结果: