优选算法之前缀和(下)

目录

一、和为 k 的子数组

1.题目链接:560. 和为 K 的子数组

2.题目描述:

3.解法(前缀和 + 哈希表)

🌻算法思路:

🌻算法代码:

二、和可被 k 整除的子数组

1.题目链接:974. 和可被 K 整除的子数组

2.题目描述:

3.解法(前缀和 + 哈希表)

🌻本题需要的前置知识:

🌻算法思路:

🌻算法代码:

三、连续数组

1.题目链接:525. 连续数组

2.题目描述:

3.解法(前缀和在哈希表中)

🌻算法思路:

🌻算法代码:

四、矩阵区域和

1.题目链接:1314. 矩阵区域和

2.题目描述:

3.解法(前缀和在哈希表中)

🌻算法思路:

🌻算法代码:


一、和为 k 的子数组

1.题目链接:560. 和为 K 的子数组

2.题目描述:

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 

子数组是数组中元素的连续非空序列。

示例 1:

输入:nums = [1,1,1], k = 2
输出:2

示例 2:

输入:nums = [1,2,3], k = 3
输出:2

3.解法(前缀和 + 哈希表

🌻算法思路:

设 i 为数组中的任意位置,用 sum[i] 表示 [0, i] 区间内所有元素的和。

想知道有多少个「以 i 为结尾的和为 k 的子数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和为 k 。那么 [0, x] 区间内的和就是 sum[i] - k 了。于是问题就变成:

  • 找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可。

我们不用真的初始化一个前缀和数组,因为我们只关心在 i 位置之前,有多少个前缀和等于 sum[i] - k 。因此,我们仅需用一个哈希表,一边求当前位置的前缀和,一边存下之前每一种前缀和出现的次数。

🌻算法代码:

class Solution 
{
public:
    int subarraySum(vector<int>& nums, int k) 
    {
        unordered_map<int, int> hash;// 统计前缀和出现的次数
        hash[0] = { 1 };

        int sum = 0, ret = 0;
        for(auto x : nums)
        {
            sum += x;// 计算当前位置的前缀和
            if(hash.count(sum - k))
                ret += hash[sum - k];// 统计个数
            hash[sum]++;
        }
        return ret;
    }
};

二、和可被 k 整除的子数组

1.题目链接:974. 和可被 K 整除的子数组

2.题目描述:

给定一个整数数组 nums 和一个整数 k ,返回其中元素之和可被 k 整除的非空 子数组 的数目。

子数组 是数组中 连续 的部分。

示例 1:

输入:nums = [4,5,0,-2,-3,1], k = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 k = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

示例 2:

输入: nums = [5], k = 9
输出: 0

3.解法(前缀和 + 哈希表

🌻本题需要的前置知识:

  • 同余定理

如果 (a - b) % n == 0 ,那么我们可以得到一个结论: a % n == b % n 。用文字叙述就是,如果两个数相减的差能被 n 整除,那么这两个数对 n 取模的结果相同。

例如: (26 - 2) % 12 == 0 ,那么 26 % 12 == 2 % 12 == 2 。

  • c++ 中负数取模的结果,以及如何修正「负数取模」的结果

a. c++ 中关于负数的取模运算,结果是「把负数当成正数,取模之后的结果加上一个负号」。

例如: -1 % 3 = -(1 % 3) = -1

b. 因为有负数,为了防止发生「出现负数」的结果,以 (a % n + n) % n 的形式输出保证为正。

例如: -1 % 3 = (-1 % 3 + 3) % 3 = 2

🌻算法思路:

设 i 为数组中的任意位置,用 sum[i] 表示 [0, i] 区间内所有元素的和。

  • 想知道有多少个「以 i 为结尾的可被 k 整除的子数组」,就要找到有多少个起始位置为 x1,x2, x3... 使得 [x, i] 区间内的所有元素的和可被 k 整除。
  • 设 [0, x - 1] 区间内所有元素之和等于 a , [0, i] 区间内所有元素的和等于 b ,可得(b - a) % k == 0 。
  • 由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 sum[i] % k 的即可。

我们不用真的初始化一个前缀和数组,因为我们只关心在 i 位置之前,有多少个前缀和等于sum[i] - k 。因此,我们仅需用⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种前缀和出现的次数。

🌻算法代码:

class Solution 
{
public:
    int subarraysDivByK(vector<int>& nums, int k) 
    {
        unordered_map<int, int> hash;
        hash[0 % k] = { 1 };// 0这个数的余数

        int sum = 0, ret = 0;
        for(auto x : nums)
        {
            sum += x;// 算出当前位置的前缀和
            int r = (sum % k + k) % k;// 修正后的余数
            if(hash.count(r))
                ret += hash[r];// 统计结果
            hash[r]++;
        }
        return ret;
    }
};

三、连续数组

1.题目链接:525. 连续数组

2.题目描述:

给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。

示例 1:

输入: nums = [0,1]
输出: 2
说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。

示例 2:

输入: nums = [0,1,0]
输出: 2
说明: [0, 1] (或 [1, 0]) 是具有相同数量0和1的最长连续子数组。

3.解法(前缀和在哈希表中

🌻算法思路:

稍微转化⼀下题目,就会变成我们熟悉的题:

  • 本题让我们找出⼀段连续的区间, 0 和 1 出现的次数相同。
  • 如果将 0 记为 -1 , 1 记为 1 ,问题就变成了找出⼀段区间,这段区间的和等于 0 。
  • 于是,就和 560. 和为 K 的⼦数组 这道题的思路⼀样。

设 i 为数组中的任意位置,用 sum[i] 表示 [0, i] 区间内所有元素的和。

想知道最大的「以 i 为结尾的和为 0 的子数组」,就要找到从左往右第⼀个 x1 使得 [x1, i] 区间内的所有元素的和为 0 。那么 [0, x1 - 1] 区间内的和是不是就是 sum[i] 了。于是问题就变成:

  • 找到在 [0, i - 1] 区间内,第⼀次出现 sum[i] 的位置即可。

我们不用真的初始化⼀个前缀和数组,因为我们只关心在 i 位置之前,第⼀个前缀和等于 sum[i]的位置。因此,我们仅需用⼀个哈希表,⼀边求当前位置的前缀和,⼀边记录第⼀次出现该前缀和的位置。

🌻算法代码:

class Solution 
{
public:
    int findMaxLength(vector<int>& nums) 
    {
        unordered_map<int, int> hash;
        hash[0] = -1;// 默认有一个前缀和为 0 的情况
        
        int sum = 0, ret = 0;
        for(int i = 0; i < nums.size(); i++)
        {
            sum += nums[i] == 0 ? -1 : 1;// 计算当前位置的前缀和
            if(hash.count(sum)) ret = max(ret, i - hash[sum]);
            else hash[sum] = i;
        }
        return ret;
    }
};

四、矩阵区域和

1.题目链接:1314. 矩阵区域和

2.题目描述:

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和: 

  • i - k <= r <= i + k,
  • j - k <= c <= j + k 且
  • (r, c) 在矩阵内。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]

示例 2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

3.解法(前缀和在哈希表中

🌻算法思路:

  1. 二维前缀和的简单应用题,关键就是我们在填写结果矩阵的时候,要找到原矩阵对应区域的「左上角」以及「右下角」的坐标(推荐画图)。
  2. 左上角坐标: x1 = i - k,y1 = j - k ,但是由于会「超过矩阵」的范围,因此需要对 0 取⼀个 max 。因此修正后的坐标为: x1 = max(0, i - k), y1 = max(0, j - k) ;
  3. 右下角坐标: x1 = i + k,y1 = j + k ,但是由于会「超过矩阵」的范围,因此需要对m - 1,以及 n - 1 取一个min。因此修正后的坐标为:x2 = min(m - 1, y + k), y2 = min(n - 1, j + k)。
  4. 然后将求出来的坐标代入到「二维前缀和矩阵」的计算公式上即可~(但是要注意下标的映射关系)。

🌻算法代码:

class Solution 
{
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) 
    {
        int m = mat.size(), n = mat[0].size();
        // 1.预处理前缀和矩阵
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for(int i = 1; i <= m; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + mat[i - 1][j - 1] - dp[i - 1][j - 1];
            }
        }

        // 2.使用
        vector<vector<int>> ret(m, vector<int>(n));
        for(int i = 0; i < m; i++)
        {
            for(int j = 0; j < n; j++)
            {
                int x1 = max(0, i - k) + 1, y1 = max(0, j - k) + 1;
                int x2 = min(m - 1, i + k) + 1, y2 = min(n - 1, j + k) + 1;
                ret[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];
            }
        }
        return ret;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南风与鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值