算法 最小生成树

算法选择

稠密图:朴素版普利姆算法【因为代码短】

稀疏图:克鲁斯卡尔算法【因为思路简单】

普利姆(Prim)

朴素 Prim

时间复杂度 O(n^2)

适用情况

稠密图

算法流程

集合:当前已经在连通块中的所有点

  1. 初始化距离,将所有距离初始化为正无穷
  2. n 次迭代,因为要加入 n 个点

for(int i = 0; i < n; i ++)

找到集合外距离最近的点,赋给 t

用 t 更新其它点到集合的距离

把 t 加到集合中st[t] = true;

模板

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim() {
	memset(dist, 0x3f, sizeof dist);//初始化所有距离
	int res = 0;//最小生成树中所有边之和
	for (int i = 0;i < n;i++) {//n次迭代
		int t = -1;
		for (int j = 1;j <= n;j++) {//找集合外距离最小的点
			if (!st[j] && (t == -1 || dist[t] > dist[j]))//t==-1说明现在还没有找到任何一个点
				t = j;//t存当前距离最小的点
		}
		if (i && dist[t] == INF)//如果不是第一个点并且dist[t]是正无穷,说明当前图是不连通的,说明不存在最小生成树
			return INF;
        if (i)//先累加,再更新,防止自环的加入
			res += dist[t];
		for (int j = 1;j <= n;j++)
			dist[j] = min(dist[j], g[t][j]);//dist表示该点到集合的距离
		st[t] = true;
	}
	return res;
}

例题——Prim求最小生成树

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式

第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围

1≤n≤500,

1≤m≤10^5,

图中涉及边的边权的绝对值均不超过10000。

输入样例

4 5

1 2 1

1 3 2

1 4 3

2 3 2

3 4 4

输出样例

6

代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim() {
	memset(dist, 0x3f, sizeof dist);//初始化所有距离
	int res = 0;//最小生成树中所有边之和
	for (int i = 0;i < n;i++) {//n次迭代
		int t = -1;
		for (int j = 1;j <= n;j++) {//找集合外距离最小的点
			if (!st[j] && (t == -1 || dist[t] > dist[j]))//t==-1说明现在还没有找到任何一个点
				t = j;//t存当前距离最小的点
		}
		if (i && dist[t] == INF)//如果不是第一个点并且dist[t]是正无穷,说明当前图是不连通的,说明不存在最小生成树
			return INF;
        if (i)//先累加,再更新,防止自环的加入
			res += dist[t];
		for (int j = 1;j <= n;j++)
			dist[j] = min(dist[j], g[t][j]);//dist表示该点到集合的距离
		st[t] = true;
	}
	return res;
}
int main() {
	scanf("%d%d", &n, &m);
	memset(g, 0x3f, sizeof g);
	while (m--) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		g[a][b] = g[b][a] = min(g[a][b], c);
	}
	int t = prim();
	if (t == INF)
		puts("impossible");//所有点不连通时不存在最小生成树
	else
		printf("%d\n", t);
	return 0;
}

堆优化 Prim

时间复杂度 O(mlogn)

适用情况

稀疏图

克鲁斯卡尔(Kruskal)

时间复杂度 O(mlogm)

适用情况

稀疏图

算法流程

  1. 将所有边按照权重从小到达排序,可以用快排排序 O(mlogm)
  2. 从小到大依次枚举每条边a,b,权重c O(m)

如果a,b不连通,那么将这条边加入集合中

模板

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 200010;
int n, m;
int p[N];
struct Edge {
	int a, b, w;
	bool operator<(const Edge& W)const {
		return w < W.w;
	}
}edges[N];
int find(int x) {
	if (p[x] != x)
		p[x] = find(p[x]);
	return p[x];
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 0;i < m;i++) {
		int a, b, w;
		scanf("%d%d%d", &a, &b, &w);
		edges[i] = { a,b,w };
	}
    //克鲁斯卡尔算法
	sort(edges, edges + m);//将所有边按权重排序
	for (int i = 1;i <= n;i++)//初始化并查集
		p[i] = i;
	int res = 0, cnt = 0;
	for (int i = 0;i < m;i++) {//从小到大枚举所有边
		int a = edges[i].a, b = edges[i].b, w = edges[i].w;
		a = find(a), b = find(b);
		if (a != b) {//两个祖宗节点不连通
			p[a] = b;//合并两个集合
			res += w;//res存最小生成树中所有树边权重之和
			cnt++;//cnt存当前加了多少条边
		}
	}
	if (cnt < n - 1)//不连通
		puts("impossible");
	else
		printf("%d\n", res);
	return 0;

}

例题——Kruskal求最小生成树

题目描述

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式

第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围

1≤n≤10^5,

1≤m≤2∗10^5,

图中涉及边的边权的绝对值均不超过1000。

输入样例

4 5

1 2 1

1 3 2

1 4 3

2 3 2

3 4 4

输出样例

6

代码

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 200010;
int n, m;
int p[N];
struct Edge {
	int a, b, w;
	bool operator<(const Edge& W)const {
		return w < W.w;
	}
}edges[N];
int find(int x) {
	if (p[x] != x)
		p[x] = find(p[x]);
	return p[x];
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 0;i < m;i++) {
		int a, b, w;
		scanf("%d%d%d", &a, &b, &w);
		edges[i] = { a,b,w };
	}
	sort(edges, edges + m);
	for (int i = 1;i <= n;i++)
		p[i] = i;
	int res = 0, cnt = 0;
	for (int i = 0;i < m;i++) {
		int a = edges[i].a, b = edges[i].b, w = edges[i].w;
		a = find(a), b = find(b);
		if (a != b) {
			p[a] = b;
			res += w;//res存最小生成树中所有树边权重之和
			cnt++;//cnt存当前加了多少条边
		}
	}
	if (cnt < n - 1)
		puts("impossible");
	else
		printf("%d\n", res);
	return 0;

}
  • 17
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何hyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值