The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.

出现如下报错:

NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
......

RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.

上面报错的大概意思是说 pytorch的版本的CUDA的版本不匹配!

Python 3.7.16 (default, Jan 17 2023, 22:20:44) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.__version__
'1.11.0+cu102'

执行python后发现自己的cu10.2可能太老了,所以直接去这个网站下载对应版本的torch:

网站:download.pytorch.org/whl/torch_stable.html

然后下载torch-1.12.0+cu113-cp37-cp37m-linux_x86_64.whl

然后使用命令安装:

pip install torch-1.12.0+cu113-cp37-cp37m-linux_x86_64.whl

最后再次执行python:

Python 3.7.16 (default, Jan 17 2023, 22:20:44) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.__version__
'1.12.0+cu113' 

OK! 搞定了哈哈哈哈哈! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值