线性回归和多层感知机实战指南

目录

1. 基础知识

1.1 线性回归

1.2 多层感知机

2. 实验代码与结果

2.1线性回归部分

2.1.1 生成数据集

2.1.2模型训练与实现

2.1.3训练结果可视化

2.2多层感知机

2.2.1实验数据集

2.2.2模型训练与实现

2.2.3训练结果可视化

3.总结


1. 基础知识

1.1 线性回归

**线性回归**是一种用于建模特征与标签之间线性关系的监督学习算法。

其数学表达式为:  
$$ y = \mathbf{X}\mathbf{w} + b + \epsilon $$  
其中:
- $y$ 是标签值
- \mathbf{X} 是输入特征矩阵
$\mathbf{w}$ 是权重向量
- $b$ 是偏置项
- $\epsilon$ 是噪声项

目标是通过最小化预测值与真实值的均方误差(MSE)来优化参数 $\mathbf{w}$$b$

1.2 多层感知机

**多层感知机(MLP)**是一种前馈神经网络,包含输入层、隐藏层和输出层。每个层通过激活函数(如ReLU、Sigmoid)实现非线性变换,能够解决复杂的非线性分类和回归问题。其核心公式为:  
$$ \mathbf{h} = \sigma(\mathbf{X}\mathbf{W} + \mathbf{b}) $$  
其中 $\sigma$是激活函数。

2. 实验代码与结果

2.1线性回归部分

2.1.1 生成数据集

使用带噪声的线性模型生成合成数据:


                
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值