目录
1. 基础知识
1.1 线性回归
**线性回归**是一种用于建模特征与标签之间线性关系的监督学习算法。

其数学表达式为:
$$ y = \mathbf{X}\mathbf{w} + b + \epsilon $$
其中:
- 是标签值
- 是输入特征矩阵
- 是权重向量
- 是偏置项
- 是噪声项
目标是通过最小化预测值与真实值的均方误差(MSE)来优化参数 和
。
1.2 多层感知机
**多层感知机(MLP)**是一种前馈神经网络,包含输入层、隐藏层和输出层。每个层通过激活函数(如ReLU、Sigmoid)实现非线性变换,能够解决复杂的非线性分类和回归问题。其核心公式为:
$$ \mathbf{h} = \sigma(\mathbf{X}\mathbf{W} + \mathbf{b}) $$
其中 是激活函数。
2. 实验代码与结果
2.1线性回归部分
2.1.1 生成数据集
使用带噪声的线性模型生成合成数据:

最低0.47元/天 解锁文章
2695

被折叠的 条评论
为什么被折叠?



