一、数据介绍
来源:kaggle
该数据集是Olist Store匿名处理过的真实商业数据,包含2016年至2018年在巴西多个市场进行的10万个订单的信息。数据集中一共有9张表格,这里选取其中五张进行分析。
字段:
- olist_orders_dataset:包含订单id,顾客id,订单状态,购买时间等信息
- olist_order_items_dataset:包含订单id,物品数量,商品id,商品价格和运费等信息
- olist_order_reviews_dataset:包含评论id,订单id,评价分数等信息
- olist_products_dataset:包含商品id,商品品类等商品信息
- product_category_name_translation:包含商品品类和商品品类的英文翻译
二、结论先行
1.平台运营建议:综合订单数、MAU和GMV指标来看,平台遇到发展瓶颈,典型表现为用户平均收入水平维持,指标增速放缓,甚至出现回落的趋势。
针对用户规模,需评估国内市场是否达到饱和,如果是,可以考虑发展海外市场,同时做好用户运营,减少用户流失;如果不是,则可能与平台自身运营不佳有关或竞争对手抢占市场导致,需要调整对内运营策略,优化用户体验,减少用户流失,对外及时跟进竞争对手动态,持续拓展站外流量。
针对成交额,在保证用户规模健康增长的同时,一方面有效利用10-22点的用户活跃时段进行运营,提高各环节的转化率,另一方面做好用户运营,培养优质用户,提高用户平均收入。
2.用户运营建议:结合用户共同特点和商品喜好采取运营措施。
平台用户的消费次数都较少,有较大的提升空间,对于已经有消费行为的老用户进行针对性消息推送并提供消费返还抵用券等优惠,降低二次消费门槛,提升复购率。同时还可以推出vip会员服务,为用户提供消费折扣,引导用户长期消费,增强粘性。
健美产品、电脑配件、运动休闲等品类是大众热门品类,适合结合特定节假日做促销优惠,吸引用户关注,增加曝光量,而手表和家居用品则属于小众热门商品,对特定类型用户来说更受欢迎,适合选择合适的用户群体进行推荐。
三、分析框架
- 流量指标:活跃用户数(DAU、MAU、时段)
- 运营指标:GMV(季度、月)、ARPU(季度、月)、订单数(天、月、时段)
- RFM用户价值分层:各层次用户购买品类(热门指数=金额+评价分数
四、数据清洗
#1、重命名
RENAME TABLE olist_orders_dataset_csv TO orders;
RENAME TABLE olist_order_items_dataset_csv TO item;
RENAME TABLE olist_order_reviews_dataset_csv TO review;
RENAME TABLE olist_products_dataset_csv TO product ;
RENAME TABLE product_category_name_translation_csv TO category;
#2、缺失值处理
#从kaggle数据源提供的各表各列空值情况可知,review表的控制集中在review_comment_title列和review_comment_message列
#orders表的空值集中在order_approved