黑色星期五促销活动销售数据分析

1.数据概述与清洗

1.1数据概述

数据来源:kaggle https://link.zhihu.com/?target=https%3A//www.kaggle.com/datasets/sdolezel/black-friday

本报告数据由Kaggle提供,共有数据550068条,12个字段,分别包含用户编号、产品编号、性别、年龄、职业、城市分类、城市居住时间、婚姻情况、产品类别1、产品类别2、产品类别3、购买金额。由于数据量庞大,Excel很难快速处理数据,因此本报告采用SQL对相关数据进行处理。

1.2数据清洗

本报告在分析前对数据缺失值与异常值进行区分,数据中的应没有缺失值的字段为User_ID、Product_ID和Purchase三个字段,如果三个字段有缺失值则数据分析没有意义,应采取缺失值处理措施,此外Purchase金额字段也不该为零。结果如图1所示发现数据中没有缺失值及为0的值。

SELECT `User_ID`,`Product_ID`,`Purchase`
FROM `black_friday`
WHERE `User_ID` IS NULL
AND `Product_ID` IS NULL
AND `Purchase` IS NULL;

图 1 数据清洗结果

2. 现状分析

2.1业务背景与逻辑分析

本报告的研究背景为黑色星期五的促销活动,我们需要根据促销活动的销售数据来分析整体的销售情况,以及根据消费者的个人特征进行用户画像分析,可以针对不同的用户进行不同的促销活动,所以本报告主要对用户的特征进行简要分析。

2.2整体销售情况分析

本报告从总体上对消费者数量、产品数量、金额进行简要分析,由图2所示,在促销活动期间总消费金额达到了近51亿,有5891个消费者对3631个产品产生了购买行为。

SELECT COUNT(DISTINCT `User_ID`) AS ucount,
COUNT(DISTINCT Product_id) AS pcount,
SUM(purchase) AS sumpurchase
FROM `black_friday`;

 图 2整体销售情况

2.3消费者情况分析

2.3.1消费者群体特征分析

SELECT Gender, COUNT(*) AS COUNT, Product_ID,
Age, SUM(Purchase) AS Amount
FROM `black_friday`
GROUP BY Gender,Product_ID,Age
ORDER BY SUM(Purchase) DESC
LIMIT 10;

 图 3消费者群体特征

从上面的输入结果可以看出,销售金额前10名全部是男性,年龄也均为26-35,可以初步判定这个年龄阶段的男性是此次活动中参与度较高的消费者。

2.3.2消费者年龄分析

SELECT Age,
COUNT(*) AS acount,
CONCAT(ROUND(COUNT(Age)/(SELECT COUNT(Age) FROM `black_friday`)*100,2),'%') AS 'Percent',
SUM(Purchase) AS aamount
FROM `black_friday`
GROUP BY Age
ORDER BY SUM(Purchase) DESC;
图 4消

 图 4消费者年龄分布表

图 5消费者年龄分布图

如图4和图5展示了本次促销活动的年龄分布,此次黑色星期五促销活动中购买力最强的是26-35年龄阶段的消费者,占39.92%,其中最少的为0-17岁的消费者,占比仅为2.75%,说明在26-35年龄阶段的消费者有一定的经济基础且有较大的购买欲望,所以会在活动中购买更多的产品。

2.3.3消费者性别分析

SELECT Gender,
COUNT(*) AS Gcount,
CONCAT(ROUND(COUNT(Gender)/(SELECT COUNT(Gender) FROM `black_friday`)*100,2),'%') AS Percent,
SUM(Purchase) AS Aamount
FROM `black_friday`
GROUP BY Gender
ORDER BY SUM(Purchase) DESC;

图 6消费者性别分布表

 图 7消费者性别分布图

如图6和图7所示,此次促销活动中消费者为男性的比例远大于性别为女性的比例,男性占比为75.31%,女性仅占24.69%,说明本次促销活动的形式及产品更加吸引男性消费者的注意。

2.3.4消费者城市分布分析

SELECT City_category AS City,
COUNT(*) AS Gcount,
CONCAT(ROUND(COUNT(City_category)/(SELECT COUNT(City_category) FROM `black_friday`)*100,2),'%') AS Percent,
SUM(Purchase) AS Aamount
FROM `black_friday`
GROUP BY City_category
ORDER BY SUM(Purchase) DESC

 图 8消费者城市分布表

 图 9消费者城市分布图

如图8和9所示,在黑色星期五活动期间,三个城市A、B和C的消费分布基本很均匀,其中最高的是B城市,B城市销售占比高达42.03%,最少的是A城市,消费占比为26.85%。

2.3.5 消费者婚姻分布分析

SELECT Marital_Status AS Marriage,
COUNT(*) AS Gcount,
CONCAT(ROUND(COUNT(Marital_Status)/(SELECT COUNT(Marital_Status) FROM `black_friday`)*100,2),'%') AS Percent,
SUM(Purchase) AS Aamount
FROM `black_friday`
GROUP BY Marital_Status
ORDER BY SUM(Purchase) DESC

 图 10消费者婚姻分布表

 

 图 11消费者婚姻分布图

如图10和11所示,在黑色星期五期间,未婚消费者群体消费大于已婚消费者群体,未婚消费者群体占比59.03%,已婚消费者人数占比40.97%。

2.3.6 消费者产品类别

SELECT Product_Category_1 AS Pcategory,
COUNT(*) AS Gcount,
CONCAT(ROUND(COUNT(Product_Category_1)/(SELECT COUNT(Product_Category_1) FROM `black_friday`)*100,2),'%') AS Percent
FROM `black_friday`
GROUP BY Product_Category_1
ORDER BY COUNT(*) DESC
LIMIT 10;


图 12消费者产品类别表 

 图 13 消费者产品类别图

如图12和图13所示,在这次促销活动中最为受欢迎的三个类别的产品是5、1和8,三个类别的售卖比例达到了70%以上,说明这三类产品的欢迎度是很高的,另一方面也说明者三类产品的促销活动的效果很好。

3. 总结

3.1此次黑色星期五销售共50多亿,有5,891位消费者购买了3,677种产品。

3.2从以上关于消费者的输入结果可以看出,消费者主要集中在18-45岁之间的男性未婚消费者中。B城市的购买人数,明显的高于A和C。

3.3从消费者对于产品的偏好中可以看出,消费者此次促销活动中更加偏爱的产品类别是5、1和8.

4. 改善建议

4.1通过总结得出消费者多为年轻的未婚男士,在以后的活动设计中,多考虑年轻男士的喜好,可以在男士集中区投入更多的推广和广告,持续吸引更多的男士。

4.2后续需要进一步分析女性消费者参与率低的原因,在日常来说女性消费者应该能够有更大的购买力,因此需要看此次促销的产品是否不受女性消费者的喜爱,或者分析是否是活动的推广和促销没有很好的吸引到女性消费者。

4.3后续可以根据不同区域、不同年龄阶段所偏好的产品的不同从而采取有针对性的促销活动,从而进一步提升产品的销售量和销售额。

微信扫码订阅
UP更新不错过~
关注
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IM219

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值