树、二叉树、满二叉树、完全二叉树(详解)

目录

树的概念

树的相关概念

树的表示

树的实际应用

二叉树

二叉树的概念

现实二叉树

特殊二叉树

        满二叉树

        完全二叉树

二叉树的性质

二叉树的存储结构

        顺序结构

        链式结构


树的概念

        树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合。把它叫做“树”,是因为它看起来像一颗倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

         注:树形结构中,子树之间不能有交集,否则就不是树形结构

树的相关概念

        节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

        叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

        非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

        双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

        孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

        兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

        树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

        树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

        堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

        节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

        子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

        森林:由m(m>0)棵互不相交的树的集合称为森林; 

树的表示

        树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。        

typedef int DataType;

struct Node
{
	struct Node* firstChild;   //第一个孩子结点
	struct Node* nextBrother;  //指向下一个兄弟结点
	DataType data;             //结点中的数据域
};

树的实际应用

        表示文件系统的目录树结构

 

二叉树

二叉树的概念

        一棵二叉树是结点的一个有限集合,该集合:

        1. 或者为空

        2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

        从上图可以看出:

        1. 二叉树不存在度大于2的结点

        2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树 

注意:对于任意的二叉树都是由以下几种情况复合而成的:

现实二叉树

特殊二叉树

        满二叉树

        一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

        完全二叉树

        完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

总结:
满二叉树:若树的深度为K,那么它的每一层的结点数必须都是满的。
完全二叉树:若数的深度为K,那么它的前K-1层的结点数必须都是满的,第K层的结点数可以不是满的但是从左到右必须是连续的。

二叉树的性质

性质一:若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2i-1个结点。
性质二:若规定根结点的层数为1,则深度为h的二叉树的最大结点数为2h-1个。
性质三:对任何一棵二叉树,如果度为0的叶结点个数为n0,度为2的分支结点个数为n2,则有n0 = n2+1。
性质四:若规定根结点的层数为1,则具有N个结点的满二叉树的深度h = log2(N+1)。
性质五:对于具有N个结点的完全二叉树,如果按照从上至下、从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点:
        若 i > 0,则该结点的父结点序号为:( i - 1) / 2;若 i = 0,则无父结点。
        若2i + 1 < N,则该结点的左孩子序号为:2i + 1;若2i + 1 >= N,则无左孩子。
        若2i + 2 < N,则该结点的右孩子序号为:2i + 2;若2i + 2 >= N,则无右孩子。

 

二叉树的存储结构

        顺序结构

        顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实生活中只有堆(一种二叉树)才会使用数组来存储。

        二叉树的顺序存储在物理上是一个数组,在逻辑上是一棵二叉树

        链式结构

        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素之间的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来存储该结点左孩子和右孩子所在的结点的地址。
        链式结构又分为二叉链和三叉链,之后我们会用二叉链来实现二叉树的链式存储结构,三叉链运用于更高阶的数据结构,例如红黑树。

typedef int BTDataType;

// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* _pLeft; // 指向当前节点左孩子
    struct BinTreeNode* _pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点值域
};

// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* _pParent; // 指向当前节点的双亲
    struct BinTreeNode* _pLeft; // 指向当前节点左孩子
    struct BinTreeNode* _pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点值域
};
  • 30
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完全二叉树有几种特殊形态,包括斜满二叉树完全二叉树本身。 1. 斜:斜是指所有的结点都只有左子或者只有右子。斜可以分为左斜和右斜两种形态。左斜中的每个结点都只有左子,右斜中的每个结点都只有右子。 2. 满二叉树满二叉树是指除了叶结点外每个结点都有左右子,并且所有的叶结点都在同一层。满二叉树的特点是每一层的结点数都达到最大值,即每层的结点数是2的幂次方。 3. 完全二叉树完全二叉树是指除了最后一层外,每一层的结点都有左右子,并且最后一层的结点都集中在左部。也可以理解为,完全二叉树是在一棵满二叉树的基础上去掉最后一层的部分结点而形成的。 这些是完全二叉树的几种形态。需要注意的是,满二叉树完全二叉树的一种特殊形态。完全二叉树在使用二叉树进行存储和操作时具有一定的优势,因为它的结构相对简单,能够更高效地利用存储空间。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [力扣刷题 | 二叉树](https://download.csdn.net/download/weixin_38633083/13740772)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [二叉树带图详解](https://blog.csdn.net/m0_61227789/article/details/126455663)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [【数据结构二叉树的基本形态和存储结构](https://blog.csdn.net/Jacky_Feng/article/details/108436498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值