用最少圆覆盖所有点问题,给出n个点的坐标和圆的半径大小,求最少多少个圆可以覆盖所有的点,n <= 20.

本文介绍了二维欧几里得平面上的最少圆覆盖问题,即给定n个点和圆的半径,如何用最少数量的圆覆盖所有点。提出了两种解法:1) 动态精度分配的近似算法,通过遍历点和生成圆心找到最优解;2) 贪心算法,寻找每次能覆盖最多点的圆。针对小规模数据,两种算法能在限制时间内找到接近答案,但因NP-hard性质,可能存在缺陷,需要多次打乱点的顺序并取最小答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中文版背景:最少圆覆盖

在二维欧几里得平面上,给出n个点的坐标(x, y),和一个圆的半径大小r,求至少多少个这样半径的圆可以覆盖所有的点?(n <=20, |x|, |y| <= 180, 给定的每组(x, y)间的距离不会小于等于0.1)

英文版背景:Minimum Geometric Disk Cover Problem (MGDC):

Given a set P of n points in the Euclidean plane, the minimum geometric disk cover (MGDC) problem is to identify a minimally sized set of congruent disks with prescribed radius r that cover all the points in P.

输入:

一共有t组, 每组数据中第一行是点的数量n, 接下来第2到第n+1行,每行两个数据表示n个点的坐标,第n+2行是圆的半径大小

输出:

输出t行,每行一个数字,表示该组数据需要的最少的圆的数量

以下为一组样例:

input:

2

2
17.2345 20.5678
15.34 28.342
3.5

2
-180 -180
-1 -1
254

output:

2
1

解法1:暴力动态精度分配近似算法(实现简单)

题目显然是np-hard问题,我们使用近似算法来逼近正确答案,由于数据范围很小只有20,因此遍历点比遍历地图要更优的多,我们规定在1s内完成该算法,因此该程序最多进行约1kw次运算,由于浮点运算有精度的要求,我们不能同时兼顾精度和时间,因此我们根据给出的数据范围动态地安排精度, 我们设精度为d_eps, 即dynamic eps

伪代码:

遍历所有的点

        该点的坐标为(x, y)

        在(x - r, y - r)到(x + r, y + r)的矩形范围内以d_eps为间隔生成\frac{4r^2}{d\_eps^2}个圆心

        在这些圆中找到一个能覆盖点最多的圆(最优圆)

        选择使用这个圆并移除所有被该圆覆盖的点

继续遍历没有被移除的点

 时间复杂度

遍历所有的点复杂度为O(n), 生成圆心复杂度为O(4r^{2}\frac{1}{d\_eps^2}), 找到其中的最优圆复杂度为O(n), 因此总复杂度为O(4n^2r^2\frac{1}{d\_eps^2}), 我们令上面的多项式值为1kw,即可计算出预设的动态精度的值d\_ \,eps = \frac{1}{\sqrt{10000000/20/20/4/r^2}},该操作使得该算法在极限数据的情况下,理论运算时间恒为1s左右,实际运行中由于剪枝过程使得运算时间大大减少,若要牺牲时间换取更高的精度,则可以将1kw更换成5kw等更大的数

算法优化

按照矩形生成圆心在一定程度上非常地浪费空间,只是实现方法容易。

还有一种更好的方法可以在提高算法精度的同时,不以牺牲时间为代价。

想法如下:

在选取一个点的时候,以该点为圆心,r为

这个问题是一个典型的优化问题,具体来说,是一个组合优化问题。我们需要在给定的网格上找到一个,使得这个作为信号塔的位置可以覆盖最多的终端设备。这个问题可以通过暴力搜索或者更高效的算法来解决。 ### 问题描述分析 1. **网格大小**:网格的大小为 \(n \times m\),其中 \(1 \leq n, m \leq 100\)。这意味着网格的每个维度最多有100个单元格。 2. **终端设备数量**:有 \(X\) 个终端设备分布在网格的端上,其中 \(1 \leq X \leq 1000\)。 3. **信号塔覆盖范围**:信号塔可以覆盖半径为 \(R\)(\(1 \leq R \leq 300\))内的设备。 4. **目标**:找到信号塔的最佳位置,使得被信号覆盖的终端设备数量最多。 ### 输入输出分析 - **输入**: - 第一行包含一个整数 \(T\),表示测试用例的数量,\(1 \leq T \leq 10\)。 - 对于每个测试用例,第一行包含四个数字 \(n, m, X, R\)。 - 接下来的 \(X\) 行,每行包含两个数字 \(x_i, y_i\),表示第 \(i\) 个终端设备的位置。 - **输出**: - 对于每个测试用例,输出一个整数,表示信号塔能够覆盖的最多终端设备的数量。 ### 算法设计 1. **暴力搜索**:遍历网格上的所有可能位置,对于每个位置,计算能够覆盖的终端设备数量,然后选择覆盖数量最大的位置。这种方法简单直接,但由于需要遍历所有可能的位置,时间复杂度较高。 2. **优化方法**: - **预处理**:首先,可以计算每个终端设备到所有其他终端设备的距离,然后根据距离筛选出可能被覆盖的终端设备。 - **动态规划**:虽然这个问题不太适合直接使用动态规划,但可以考虑使用动态规划的思想来优化搜索过程,例如,通过维护一个覆盖计数的数组来记录每个位置的覆盖情况。 3. **数据结构**: - 使用数组或列表来存储终端设备的位置。 - 使用哈希表来快速查找更新覆盖计数。 ### 实现考虑 - **效率**:由于 \(n, m\) 的最大值为100,暴力搜索在大多数情况下是可行的。但是,如果需要更高效的算法,可以考虑上述优化方法。 - **边界条件**:确保信号塔的位置覆盖范围都在网格内,避免越界访问。 总的来说,这个问题可以通过暴力搜索解决,但为了提高效率,可以考虑使用更高级的算法数据结构来优化搜索过程。用c++实现
最新发布
03-10
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值