在上一篇文章中,我们已经带大家了解了“智能体”这一概念的内涵,并通过扣子智能体平台的各大模块做了初步介绍,同时用一个简单的示例演示了如何构建和部署第一个智能体。那篇文章打好了基础,让大家对智能体的基本组成与工作方式有了清晰认识。
然而,真正落地一个可用的智能体系统,不仅仅是写几行代码、连通几项服务那么简单。扣子智能体平台凭借其成熟的功能设计和灵活的工作流能力,能够帮助开发者在需求采集、模型训练、策略配置、在线评估等各个环节都做到可视化、可复用、可监控。
本文将聚焦于平台的核心功能模块,逐步剖析它们如何协同工作,本文会详细介绍扣子智能体的编排、插件、工作流、触发器的作用及使用方法。
目录
一、编排
在上一篇文章中,我们没有详细的解释创建智能体过程每一步的功能要点,下面我们会逐一详细分析
1.1 人设与回复逻辑
在扣子平台上,人设与回复逻辑是特别重要的功能,它能让开发者用提示词,精准控制 AI 模型的表现和回答内容。只要给模型下达明确指令,它就能输出符合预期的优质答案。
设置人设与回复逻辑时,首先得把智能体的角色身份定清楚。比如,你可以把它设置成专业的医疗顾问、儿童教育专家,或者技术支持工程师。这里说的角色定义,不只是个身份标签,还包括它掌握的专业知识、说话风格,甚至性格特点。举个例子,如果想打造一个儿童教育助手,那它说话就得温和友善,用词尽量简单,还得一直耐心鼓励孩子。
角色定好后,还得给智能体的能力划个范围。明确它能回答哪些问题,遇到专业外的问题怎么处理,碰上敏感话题又该怎么回应。这样设置好边界,智能体就能在合适的范围内,提供专业又准确的帮助。
在回答格式这块,通过提示词工程,能精确规定输出的结构和形式。你可以要求模型固定用一种格式,比如先简单总结,再详细展开;或者每次回答都带上具体操作步骤和注意事项。统一的格式能让用户用起来更顺手,理解和使用信息也更方便。
另外,扣子平台还有个超实用的 AI 辅助优化功能。它就像个 “提示词小助手”,能自动分析你写的提示词,找出逻辑不通、意思含糊,或者结构不完整的地方,然后给出具体修改建议,帮你把提示词改得又清晰又有效。
1.2 模型选择与参数调优
扣子平台汇聚了多种主流大语言模型,每一种模型都独具特色,适用于不同的场景。恰到好处地选择模型,不仅关乎智能体的性能展现,更对运营成本与用户体验产生深远影响。
目前支持豆包、DeepSeek、智谱、kimi等模型
大模型节点支持四种模式:精确模式、平衡模式、创意模式以及自定义模式。在不同模式下,生成的随机性和TopP参数值各有不同,而自定义模式则允许用户自由设定这两个值。以下是对这两个关键参数的详细解释:
• 生成随机性(temperature):通过调高温度,模型的输出将变得更加多样且富有创新性。反之,降低温度会使输出内容更严格地遵循指令要求,但也会相应减少多样性。建议在调整时,不要同时改变“Top p”参数。
• Top p 为累计概率:在生成输出时,模型会从概率最高的词汇开始选择,直至这些词汇的总概率累积达到Top p设定的阈值。这样可以确保模型仅选择高概率词汇,从而有效控制输出内容的多样性。建议不要与“生成随机性”参数同时调整。
精确模式:此模式严格遵循既定指令生成内容,适用于要求高度准确无误的场合,如正式文档编写和代码创作,确保输出的严谨性与规范性。
平衡模式:在创新与精确之间找到平衡点,既保持内容的严谨性,又不失趣味性,适用于日常大多数应用场景。
创意模式:致力于激发创意火花,为用户提供新颖独特的想法,适合在需要灵感和创新观点的场景中使用,如头脑风暴和创意写作等。
自定义模式:允许用户通过高级设置自定义生成方式,可根据具体需求进行精细调整,实现个性化优化,完美满足各类特定需求。
1.3 编排
扣子平台提供了三种灵活的编排模式:单Agent(LLM模式)、单Agent(对话流模式)以及多Agent模式,使您能够依据应用程序的复杂程度来挑选最适合的架构。
单Agent模式,作为最基础和常用的模式之一,在该模式下,一个智能体能够独立处理所有用户请求。其优势在于配置简便且管理高效,非常适合那些相对简单且目标集中的应用场景。例如,构建一个专门解答Python编程问题的智能助手,或是一个专注于提供健康饮食建议的顾问,单Agent模式无疑是一个理想的选择。
对话流模式,则通过预设的对话流程来处理用户的全部对话,适用于智能体技能流程相对固定的场景。如在售后服务场景中,通过指定对话流来处理咨询问题;或在长文生成场景下,根据用户的每个query分段生成内容。
多Agent模式,则适用于更为复杂的应用场景。在此模式下,多个专门的Agent共同协作,每个Agent负责特定的任务领域。这种模式特别适用于需要跨领域知识整合的复杂任务。例如,要构建一个全面的旅游助手,可能需要一个主控Agent来理解用户需求并协调任务,同时配备专门的Agent来处理机票查询、酒店推荐、景点介绍、餐厅推荐等具体任务。
在多Agent模式中,任务的分解与协调至关重要。主控Agent需要精准理解用户需求,并将其拆解为多个子任务,分配给相应的专业Agent处理。各个Agent之间必须具备清晰的通信机制,确保信息能够顺畅流通。最终,还需要有效的结果整合机制,将各个Agent的处理结果有机组织成连贯的回复呈现给用户。
二、 插件功能
插件系统是扣子平台的核心扩展机制,它显著提升了智能体的实际处理能力。利用插件,智能体能够超越纯语言模型的局限,实现与外部世界的无缝互动,并集成各种实用功能,从而拓宽了其应用范围和灵活性。
扣子平台内置了极为丰富的插件库,为智能体提供了多样化的功能扩展。
在信息获取领域,搜索引擎插件使智能体能够访问并获取实时的互联网信息,确保数据的即时性;而新闻插件则不断更新,提供全球最新的新闻资讯,让智能体紧跟时事动态。
这些强大的插件使得智能体在为用户提供信息服务时,能够保证内容的及时性和准确性。
例如,当用户对某个热点事件进行询问时,智能体可以迅速通过新闻插件获取该事件的最新进展,从而为用户提供最具时效性的回答。
下面我们简单介绍一下,如何在智能体中使用插件
我们直接在前文的例子上补充相关内容,如果你不了解扣子创建智能体流程,请回顾前面文章
这是我们创建智能体的界面
点击技能→插件右边的加号
可以在这里找到你要的插件
比如我们添加这个豆包绘图模型
然后我们直接测试,提示词与这个插件相关,模型就会自动调用这个插件
这里测试它给到是一个图片链接,点击后可以看到图片
效果还是可以的,以上就是插件的使用示例,感兴趣的朋友可以自己再去试试
三、工作流
工作流系统助力开发者设计和实现复杂的任务处理流程。通过可视化编辑器,将复杂任务分解为清晰步骤,定义关系与执行条件。
在工作流中,你可以利用多种节点类型来构建处理流程。
条件判断节点能够根据不同条件选择相应的处理路径,循环处理节点可以重复执行特定步骤,而API调用节点则可帮助与外部系统进行交互。
通过巧妙组合这些节点,您能够实现复杂的业务逻辑,灵活应对各种工作流需求。
下面简单演示一下如何在智能体中使用工作流
创建工作流
点击添加节点
以大模型为例
调整位置,连接节点
单机节点设置参数
开始节点,输入变量名 user_input、类型 String,勾选必填
大模型节点,先设置输入变量,引用开始节点的user_input变量,新变量名为input
用户提示词引用input变量,输出变量名 output
结束节点选择大模型的output变量
完成后点击下方试运行
输入问题再次点击试运行
输出结果
以上就是一个简单的工作流,最后点击右上角,填写相关信息即可发布
在智能体中添加工作流,只需要在技能中找到工作流,点击后面的加号
选择我们需要用的工作流添加
再在人设中说明直接调用某工作流回答用户问题,或者什么情况下调用这个工作流回答问题即可
四、触发器功能
触发器是扣子平台提供的一种自动化工具,它使得智能体能够依据特定的条件自动执行预定义的任务。
触发器主要可以分为两大类:基于时间的触发器和基于事件的触发器。
基于时间的触发器会在设定的时间点或时间间隔激活,而基于事件的触发器则会在特定的事件发生时启动。这一功能不仅提高了效率,还增强了智能体的响应能力,使其能够及时应对各种情况。
时间触发器是一种功能,它使您能够安排定时任务或周期性任务。比如,您可以让智能助手每天早晨向您发送天气预报,或者每周自动生成一次数据分析报告。这种自动化机制对于那些需要按时定期执行的任务尤为适用。
相比之下,事件触发器是根据特定事件来启动任务的。这些事件可能包括数据更新、用户行为,或者API调用等。例如,当某个数据指标超出预定阈值时,系统会自动发送警报;又或者在用户完成特定操作时,自动发送确认消息。
总结
这篇文章带着大家详细了解了扣子智能体平台的四个核心模块 ——“编排”“插件”“工作流” 和 “触发器”,把从设计流程到扩展功能、从执行逻辑到事件响应的整套能力都讲明白了。
读完这篇文章,你已经学会了怎么在扣子平台上,用最直观的方法设计和管理工作流,不用再操心底层那些麻烦事,可以把精力都放在业务创新上。不管是产品快速更新,还是搭建大规模在线服务,平台的可视化编排、插件扩展和灵活触发功能,都能帮开发团队轻松开发智能体,又快又省力。
光看还不够,赶紧上手试试!当然,这只是扣子智能体核心功能的一小部分,接下来的文章我们会继续深入学习,期待与你再次相见!
如果这篇文章对你有所启发,期待你的点赞关注!