毕业设计——python编写的车牌识别系统

系统概况

这段代码是一个完整的车牌识别系统,主要使用了OpenCV和SVM(支持向量机)来实现。下面我将对代码进行详细分析:

主要功能模块

  1. 图像预处理

    • 读取图像并进行大小调整

    • 高斯模糊去噪

    • 灰度转换

    • 形态学操作(开运算、闭运算)

    • 边缘检测(Canny算子)

  2. 车牌定位

    • 使用轮廓检测找到可能的车牌区域

    • 根据长宽比筛选候选区域

    • 使用颜色信息(HSV空间)精确定位车牌

  3. 字符分割

    • 二值化处理

    • 水平/垂直投影分析找到字符边界

    • 波峰检测分割单个字符

  4. 字符识别

    • 使用预训练的SVM模型识别字符

    • 中文省份字符和数字/字母分别使用不同模型

关键类和方法

CardPredictor 主类

  • train_svm(): 训练SVM模型

    • 使用chars2目录下的数据训练数字/字母识别模型

    • 使用charsChinese目录下的数据训练中文省份识别模型

  • predict(): 主识别流程

    1. 图像预处理

    2. 车牌定位

    3. 字符分割

    4. 字符识别

辅助函数

  • imreadex(): 读取图像文件(支持中文路径)

  • find_waves(): 通过阈值和直方图找波峰(用于字符分割)

  • seperate_card(): 根据波峰位置分割字符

  • deskew(): 校正倾斜的字符图像

  • preprocess_hog(): 计算HOG特征用于SVM分类

工作流程

  1. 初始化时加载配置文件(config.js)

  2. 训练或加载SVM模型

  3. 对输入图像进行处理:

    • 调整大小

    • 去噪

    • 边缘检测

    • 查找轮廓

  4. 筛选可能的车牌区域(基于形状和颜色)

  5. 对候选车牌区域进行字符分割

  6. 使用SVM模型识别每个字符

  7. 返回识别结果

数据集

测试集

训练集

 

代码展示

这段 Python 代码实现了一个车牌识别系统,主要包括车牌定位、字符分割和字符识别三个部分。以下是对代码的详细分析:

  1. 导入库

python

运行

import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json

导入了 OpenCV、NumPy、数学计算、系统、文件操作和 JSON 处理的库。

  1. 常量定义

python

运行

SZ = 20  # 训练图片长宽
MAX_WIDTH = 1000  # 原始图片最大宽度
Min_Area = 2000  # 车牌区域允许最大面积
PROVINCE_START = 1000

定义了训练图片的大小、原始图片的最大宽度、车牌区域的最小面积以及省份索引的起始值。

  1. 读取图片文件

python

运行

def imreadex(filename):
    return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)

使用cv2.imdecode函数从文件中读取图片,解决了中文路径的问题。

  1. 点坐标限制

python

运行

def point_limit(point):
    if point[0] < 0:
        point[0] = 0
    if point[1] < 0:
        point[1] = 0

确保点坐标不小于 0。

  1. 寻找波峰

python

运行

def find_waves(threshold, histogram):
    up_point = -1  # 上升点
    is_peak = False
    if histogram[0] > threshold:
        up_point = 0
        is_peak = True
    wave_peaks = []
    for i, x in enumerate(histogram):
        if is_peak and x < threshold:
            if i - up_point > 2:
                is_peak = False
                wave_peaks.append((up_point, i))
        elif not is_peak and x >= threshold:
            is_peak = True
            up_point = i
    if is_peak and up_point != -1 and i - up_point > 4:
        wave_peaks.append((up_point, i))
    return wave_peaks

根据设定的阈值和直方图,找出波峰。

  1. 分割字符

python

运行

def seperate_card(img, waves):
    part_cards = []
    for wave in waves:
        part_cards.append(img[:, wave[0]:wave[1]])
    return part_cards

根据波峰,将图片分割成单个字符。

  1. 倾斜校正

python

运行

def deskew(img):
    m = cv2.moments(img)
    if abs(m['mu02']) < 1e-2:
        return img.copy()
    skew = m['mu11'] / m['mu02']
    M = np.float32([[1, skew, -0.5 * SZ * skew], [0, 1, 0]])
    img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
    return img

使用仿射变换对字符进行倾斜校正。

  1. HOG 特征提取

python

运行

def preprocess_hog(digits):
    samples = []
    for img in digits:
        gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
        gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
        mag, ang = cv2.cartToPolar(gx, gy)
        bin_n = 16
        bin = np.int32(bin_n * ang / (2 * np.pi))
        bin_cells = bin[:10, :10], bin[10:, :10], bin[:10, 10:], bin[10:, 10:]
        mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
        hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
        hist = np.hstack(hists)

        # transform to Hellinger kernel
        eps = 1e-7
        hist /= hist.sum() + eps
        hist = np.sqrt(hist)
        hist /= norm(hist) + eps

        samples.append(hist)
    return np.float32(samples)

使用 HOG(Histogram of Oriented Gradients)算法提取字符的特征。

  1. 省份列表

python

运行

provinces = [
    "zh_cuan", "川",
    "zh_e", "鄂",
    "zh_gan", "赣",
    "zh_gan1", "甘",
    "zh_gui", "贵",
    "zh_gui1", "桂",
    "zh_hei", "黑",
    "zh_hu", "沪",
    "zh_ji", "冀",
    "zh_jin", "津",
    "zh_jing", "京",
    "zh_jl", "吉",
    "zh_liao", "辽",
    "zh_lu", "鲁",
    "zh_meng", "蒙",
    "zh_min", "闽",
    "zh_ning", "宁",
    "zh_qing", "靑",
    "zh_qiong", "琼",
    "zh_shan", "陕",
    "zh_su", "苏",
    "zh_sx", "晋",
    "zh_wan", "皖",
    "zh_xiang", "湘",
    "zh_xin", "新",
    "zh_yu", "豫",
    "zh_yu1", "渝",
    "zh_yue", "粤",
    "zh_yun", "云",
    "zh_zang", "藏",
    "zh_zhe", "浙"
]

定义了省份的拼音和汉字列表。

  1. 统计模型类

python

运行

class StatModel(object):
    def load(self, fn):
        self.model = self.model.load(fn)

    def save(self, fn):
        self.model.save(fn)

定义了一个统计模型类,包含加载和保存模型的方法。

  1. SVM 类

python

运行

class SVM(StatModel):
    def __init__(self, C=1, gamma=0.5):
        self.model = cv2.ml.SVM_create()
        self.model.setGamma(gamma)
        self.model.setC(C)
        self.model.setKernel(cv2.ml.SVM_RBF)
        self.model.setType(cv2.ml.SVM_C_SVC)

    def train(self, samples, responses):
        self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

    def predict(self, samples):
        r = self.model.predict(samples)
        return r[1].ravel()

定义了一个 SVM(Support Vector Machine)类,继承自StatModel类,包含训练和预测的方法。

车牌预测器类

  1. __init__方法

    • 打开名为config.js的文件,并加载其中的 JSON 数据。
    • 遍历 JSON 数据中的config数组,找到open字段为True的配置,并将其复制到self.cfg中。
    • 如果没有找到有效的配置参数,则抛出RuntimeError异常。
  2. __del__方法

    • 在对象被销毁时,调用save_traindata方法保存训练数据。
  3. train_svm方法

    • 创建两个SVM对象,分别用于识别英文字母和数字以及中文。
    • 检查svm.datsvmchinese.dat文件是否存在,如果存在则加载模型。
    • 如果文件不存在,则进行训练:
      • 遍历train\chars2目录,读取其中的字符图像,将其转换为灰度图,并添加到chars_train列表中,同时将字符的 ASCII 码添加到chars_label列表中。
      • chars_train中的图像进行倾斜校正和 HOG 特征提取。
      • 使用提取的特征和标签训练用于识别英文字母和数字的SVM模型。
      • 遍历train\charsChinese目录,读取其中的字符图像,将其转换为灰度图,并添加到chars_train列表中,同时将字符在provinces列表中的索引添加到chars_label列表中。
      • chars_train中的图像进行倾斜校正和 HOG 特征提取。
      • 使用提取的特征和标签训练用于识别中文的SVM模型。
  4. save_traindata方法

    • 保存训练好的SVM模型到svm.datsvmchinese.dat文件中。
  5. accurate_place方法

    • 根据车牌图像的 HSV 颜色空间和给定的颜色限制,确定车牌的位置。
    • 遍历图像的行和列,统计符合颜色条件的像素数量。
    • 根据统计结果,确定车牌的上下左右边界。
  6. predict方法

    • 如果输入是字符串,则调用imreadex方法读取图像;否则直接使用输入的图像。
    • 如果图像宽度大于MAX_WIDTH,则调整图像大小。
    • 对图像进行高斯去噪、灰度转换、形态学操作、边缘检测和开闭运算。
    • 查找图像中的轮廓,并筛选出长宽比在 2 到 5.5 之间的轮廓,认为这些轮廓可能是车牌。
    • 对每个可能的车牌轮廓进行倾斜校正和颜色定位,确定车牌的颜色和位置。
    • 根据车牌颜色,对车牌图像进行二值化处理,查找水平和垂直直方图的波峰,分割出字符。
    • 对每个字符进行预处理,使用训练好的SVM模型进行预测,将预测结果添加到predict_result列表中。
    • 返回识别到的字符、定位的车牌图像和车牌颜色。

if __name__ == '__main__':部分,创建CardPredictor对象,调用train_svm方法训练模型,然后使用predict方法对指定的图像进行车牌识别,并打印识别结果。

python

运行

class CardPredictor:
    def __init__(self):
        # 车牌识别的部分参数保存在js中,便于根据图片分辨率做调整
        f = open('config.js')
        j = json.load(f)
        for c in j["config"]:
            if c["open"]:
                self.cfg = c.copy()
                break
        else:
            raise RuntimeError('没有设置有效配置参数')

    def __del__(self):
        self.save_traindata()

    def train_svm(self):
        # 识别英文字母和数字
        self.model = SVM(C=1, gamma=0.5)
        # 识别中文
        self.modelchinese = SVM(C=1, gamma=0.5)
        if os.path.exists("svm.dat"):
            self.model.load("svm.dat")
        else:
            chars_train = []
            chars_label = []

            for root, dirs, files in os.walk("train\\chars2"):
                if len(os.path.basename(root)) > 1:
                    continue
                root_int = ord(os.path.basename(root))
                for filename in files:
                    filepath = os.path.join(root, filename)
                    digit_img = cv2.imread(filepath)
                    digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
                    chars_train.append(digit_img)
                    # chars_label.append(1)
                    chars_label.append(root_int)

            chars_train = list(map(deskew, chars_train))
            chars_train = preprocess_hog(chars_train)
            # chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
            chars_label = np.array(chars_label)
            print(chars_train.shape)
            self.model.train(chars_train, chars_label)
        if os.path.exists("svmchinese.dat"):
            self.modelchinese.load("svmchinese.dat")
        else:
            chars_train = []
            chars_label = []
            for root, dirs, files in os.walk("train\\charsChinese"):
                if not os.path.basename(root).startswith("zh_"):
                    continue
                pinyin = os.path.basename(root)
                index = provinces.index(pinyin) + PROVINCE_START + 1  # 1是拼音对应的汉字
                for filename in files:
                    filepath = os.path.join(root, filename)
                    digit_img = cv2.imread(filepath)
                    digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
                    chars_train.append(digit_img)
                    # chars_label.append(1)
                    chars_label.append(index)
            chars_train = list(map(deskew, chars_train))
            chars_train = preprocess_hog(chars_train)
            # chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
            chars_label = np.array(chars_label)
            print(chars_train.shape)
            self.modelchinese.train(chars_train, chars_label)

    def save_traindata(self):
        if not os.path.exists("svm.dat"):
            self.model.save("svm.dat")
        if not os.path.exists("svmchinese.dat"):
            self.modelchinese.save("svmchinese.dat")

    def accurate_place(self, card_img_hsv, limit1, limit2, color):
        row_num, col_num = card_img_hsv.shape[:2]
        xl = col_num
        xr = 0
        yh = 0
        yl = row_num
        # col_num_limit = self.cfg["col_num_limit"]
        row_num_limit = self.cfg["row_num_limit"]
        col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5  # 绿色有渐变
        for i in range(row_num):
            count = 0
            for j in range(col_num):
                H = card_img_hsv.item(i, j, 0)
                S = card_img_hsv.item(i, j, 1)
                V = card_img_hsv.item(i, j, 2)
                if limit1 < H <= limit2 and 34 < S and 46 < V:
                    count += 1
            if count > col_num_limit:
                if yl > i:
                    yl = i
                if yh < i:
                    yh = i
        for j in range(col_num):
            count = 0
            for i in range(row_num):
                H = card_img_hsv.item(i, j, 0)
                S = card_img_hsv.item(i, j, 1)
                V = card_img_hsv.item(i, j, 2)
                if limit1 < H <= limit2 and 34 < S and 46 < V:
                    count += 1
            if count > row_num - row_num_limit:
                if xl > j:
                    xl = j
                if xr < j:
                    xr = j
        return xl, xr, yh, yl

    def predict(self, car_pic):
        if type(car_pic) == type(""):
            img = imreadex(car_pic)
        else:
            img = car_pic
        pic_hight, pic_width = img.shape[:2]

        if pic_width > MAX_WIDTH:
            resize_rate = MAX_WIDTH / pic_width
            img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA)

        blur = self.cfg["blur"]
        # 高斯去噪
        if blur > 0:
            img = cv2.GaussianBlur(img, (blur, blur), 0)  # 图片分辨率调整
        oldimg = img
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # equ = cv2.equalizeHist(原始图片)
        # 原始图片 = np.hstack((原始图片, equ))
        # 去掉图像中不会是车牌的区域
        kernel = np.ones((20, 20), np.uint8)
        img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
        img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

        # 找到图像边缘
        ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        img_edge = cv2.Canny(img_thresh, 100, 200)
        # 使用开运算和闭运算让图像边缘成为一个整体
        kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
        img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
        img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)

        # 查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
        try:
            contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        except ValueError:
            image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
        print('len(contours)', len(contours))
        # 一一排除不是车牌的矩形区域
        car_contours = []
        for cnt in contours:
            rect = cv2.minAreaRect(cnt)
            area_width, area_height = rect[1]
            if area_width < area_height:
                area_width, area_height = area_height, area_width
            wh_ratio = area_width / area_height
            # print(wh_ratio)
            # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
            if wh_ratio > 2 and wh_ratio < 5.5:
                car_contours.append(rect)
                box = cv2.boxPoints(rect)
                box = np.intp(box)
            # oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2)
            # cv2.imshow("edge4", oldimg)
            # print(rect)

        print(len(car_contours))

        print("精确定位")
        card_imgs = []
        # 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
        for rect in car_contours:
            if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
                angle = 1
            else:
                angle = rect[2]
            rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除

            box = cv2.boxPoints(rect)
            heigth_point = right_point = [0, 0]
            left_point = low_point = [pic_width, pic_hight]
            for point in box:
                if left_point[0] > point[0]:
                    left_point = point
                if low_point[1] > point[1]:
                    low_point = point
                if heigth_point[1] < point[1]:
                    heigth_point = point
                if right_point[0] < point[0]:
                    right_point = point

            if left_point[1] <= right_point[1]:  # 正角度
                new_right_point = [right_point[0], heigth_point[1]]
                pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(new_right_point)
                point_limit(heigth_point)
                point_limit(left_point)
                card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
                card_imgs.append(card_img)
            # cv2.imshow("card", card_img)
            # cv2.waitKey(0)
            elif left_point[1] > right_point[1]:  # 负角度

                new_left_point = [left_point[0], heigth_point[1]]
                pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(right_point)
                point_limit(heigth_point)
                point_limit(new_left_point)
                card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
                card_imgs.append(card_img)
            # cv2.imshow("card", card_img)
            # cv2.waitKey(0)
        # 开始使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
        colors = []
        for card_index, card_img in enumerate(card_imgs):
            green = yello = blue = black = white = 0
            card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
            # 有转换失败的可能,原因来自于上面矫正矩形出错
            if card_img_hsv is None:
                continue
            row_num, col_num = card_img_hsv.shape[:2]
            card_img_count = row_num * col_num

            for i in range(row_num):
                for j in range(col_num):
                    H = card_img_hsv.item(i, j, 0)
                    S = card_img_hsv.item(i, j, 1)
                    V = card_img_hsv.item(i, j, 2)
                    if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                        yello += 1
                    elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                        green += 1
                    elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                        blue += 1

                    if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                        black += 1
                    elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                        white += 1
            color = "no"

            limit1 = limit2 = 0
            if yello * 2 >= card_img_count:
                color = "yello"
                limit1 = 11
                limit2 = 34  # 有的图片有色偏偏绿
            elif green * 2 >= card_img_count:
                color = "green"
                limit1 = 35
                limit2 = 99
            elif blue * 2 >= card_img_count:
                color = "blue"
                limit1 = 100
                limit2 = 124  # 有的图片有色偏偏紫
            elif black + white >= card_img_count * 0.7:  # TODO
                color = "bw"
            print(color)
            colors.append(color)
            print(blue, green, yello, black, white, card_img_count)
            # cv2.imshow("color", card_img)
            # cv2.waitKey(0)
            if limit1 == 0:
                continue
            # 以上为确定车牌颜色
            # 以下为根据车牌颜色再定位,缩小边缘非车牌边界
            xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
            if yl == yh and xl == xr:
                continue
            need_accurate = False
            if yl >= yh:
                yl = 0
                yh = row_num
                need_accurate = True
            if xl >= xr:
                xl = 0
                xr = col_num
                need_accurate = True
            card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh - yl) // 4 else card_img[
                                                                                                           yl - (
                                                                                                                       yh - yl) // 4:yh,
                                                                                                           xl:xr]
            if need_accurate:  # 可能x或y方向未缩小,需要再试一次
                card_img = card_imgs[card_index]
                card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
                xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
                if yl == yh and xl == xr:
                    continue
                if yl >= yh:
                    yl = 0
                    yh = row_num
                if xl >= xr:
                    xl = 0
                    xr = col_num
            card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh - yl) // 4 else card_img[
                                                                                                           yl - (
                                                                                                                       yh - yl) // 4:yh,
                                                                                                           xl:xr]
        # 以上为车牌定位
        # 以下为识别车牌中的字符
        predict_result = []
        roi = None
        card_color = None
        for i, color in enumerate(colors):
            if color in ("blue", "yello", "green"):
                card_img = card_imgs[i]
                gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
                # 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
                if color == "green" or color == "yello":
                    gray_img = cv2.bitwise_not(gray_img)
                ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                # 查找水平直方图波峰
                x_histogram = np.sum(gray_img, axis=1)
                x_min = np.min(x_histogram)
                x_average = np.sum(x_histogram) / x_histogram.shape[0]
                x_threshold = (x_min + x_average) / 2
                wave_peaks = find_waves(x_threshold, x_histogram)
                if len(wave_peaks) == 0:
                    print("peak less 0:")
                    continue
                # 认为水平方向,最大的波峰为车牌区域
                wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                gray_img = gray_img[wave[0]:wave[1]]
                # 查找垂直直方图波峰
                row_num, col_num = gray_img.shape[:2]
                # 去掉车牌上下边缘1个像素,避免白边影响阈值判断
                gray_img = gray_img[1:row_num - 1]
                y_histogram = np.sum(gray_img, axis=0)
                y_min = np.min(y_histogram)
                y_average = np.sum(y_histogram) / y_histogram.shape[0]
                y_threshold = (y_min + y_average) / 5  # U和0要求阈值偏小,否则U和0会被分成两半

                wave_peaks = find_waves(y_threshold, y_histogram)

                # for wave in wave_peaks:
                #	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2)
                # 车牌字符数应大于6
                if len(wave_peaks) <= 6:
                    print("peak less 1:", len(wave_peaks))
                    continue

                wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                max_wave_dis = wave[1] - wave[0]
                # 判断是否是左侧车牌边缘
                if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis / 3 and wave_peaks[0][0] == 0:
                    wave_peaks.pop(0)

                # 组合分离汉字
                cur_dis = 0
                for i, wave in enumerate(wave_peaks):
                    if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
                        break
                    else:
                        cur_dis += wave[1] - wave[0]
                if i > 0:
                    wave = (wave_peaks[0][0], wave_peaks[i][1])
                    wave_peaks = wave_peaks[i + 1:]
                    wave_peaks.insert(0, wave)

                # 去除车牌上的分隔点
                point = wave_peaks[2]
                if point[1] - point[0] < max_wave_dis / 3:
                    point_img = gray_img[:, point[0]:point[1]]
                    if np.mean(point_img) < 255 / 5:
                        wave_peaks.pop(2)

                if len(wave_peaks) <= 6:
                    print("peak less 2:", len(wave_peaks))
                    continue
                part_cards = seperate_card(gray_img, wave_peaks)
                for i, part_card in enumerate(part_cards):
                    # 可能是固定车牌的铆钉
                    if np.mean(part_card) < 255 / 5:
                        print("a point")
                        continue
                    part_card_old = part_card
                    w = abs(part_card.shape[1] - SZ) // 2

                    part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value=[0, 0, 0])
                    part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)

                    # part_card = deskew(part_card)
                    part_card = preprocess_hog([part_card])
                    if i == 0:
                        resp = self.modelchinese.predict(part_card)
                        charactor = provinces[int(resp[0]) - PROVINCE_START]
                    else:
                        resp = self.model.predict(part_card)
                        charactor = float(resp[0])
                    # 判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
                    if charactor == "1" and i == len(part_cards) - 1:
                        if part_card_old.shape[0] / part_card_old.shape[1] >= 7:  # 1太细,认为是边缘
                            continue
                    predict_result.append(charactor)
                roi = card_img
                card_color = color
                break

        return predict_result, roi, card_color  # 识别到的字符、定位的车牌图像、车牌颜色


if __name__ == '__main__':
    c = CardPredictor()
    c.train_svm()
    r, roi, color = c.predict(r"C:\Users\zjl15\Desktop\车牌识别系统\Car\2.jpg")
    print(r)

效果展示

pyQT5页面

代码展示:

代码功能概述

这段代码实现了一个基于 Tkinter 的车牌识别系统图形界面,主要功能包括:

  1. 界面布局:分为左侧原图显示区和右侧功能区,功能区包含车牌位置显示、识别结果展示和操作按钮
  2. 图片选择:通过 "来自图片" 按钮选择本地图片进行识别
  3. 车牌识别:调用predict模块中的CardPredictor类进行车牌定位、字符分割和识别
  4. 结果展示:显示识别出的车牌号码、车牌颜色(蓝牌 / 黄牌 / 绿牌)以及定位后的车牌图像

代码结构分析

类定义与初始化

python

运行

class Surface(ttk.Frame):
    def __init__(self, win):
        # 初始化界面组件
        frame_left = ttk.Frame(self)  # 左侧原图区域
        frame_right1 = ttk.Frame(self)  # 右侧上部结果区域
        frame_right2 = ttk.Frame(self)  # 右侧下部按钮区域
        
        # 布局界面
        self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")
        frame_left.pack(side=LEFT, expand=1, fill=BOTH)
        frame_right1.pack(side=TOP, expand=1, fill=tk.Y)
        frame_right2.pack(side=RIGHT, expand=0)
        
        # 创建控件
        ttk.Label(frame_left, text='原图:').pack(anchor="nw")
        self.image_ctl = ttk.Label(frame_left)  # 原图显示控件
        self.image_ctl.pack(anchor="nw")
        
        # 车牌位置和识别结果控件
        self.roi_ctl = ttk.Label(frame_right1)  # 车牌区域显示
        self.r_ctl = ttk.Label(frame_right1, text="")  # 识别结果文本
        self.color_ctl = ttk.Label(frame_right1, text="", width="20")  # 车牌颜色显示
        
        # 按钮控件
        from_pic_ctl = ttk.Button(frame_right2, text="来自图片", command=self.from_pic)
        
        # 初始化车牌识别器
        self.predictor = predict.CardPredictor()
        self.predictor.train_svm()
核心功能方法
  1. 图像显示处理

python

运行

def get_imgtk(self, img_bgr):
    # 将OpenCV的BGR格式图像转换为Tkinter可显示的格式
    img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
    im = Image.fromarray(img)
    imgtk = ImageTk.PhotoImage(image=im)
    
    # 图像尺寸适配
    wide = imgtk.width()
    high = imgtk.height()
    if wide > self.viewwide or high > self.viewhigh:
        factor = min(self.viewwide/wide, self.viewhigh/high)
        im = im.resize((int(wide*factor), int(high*factor)), Image.ANTIALIAS)
        imgtk = ImageTk.PhotoImage(image=im)
    return imgtk
  1. 车牌识别结果展示

python

运行

def show_roi(self, r, roi, color):
    if r:  # 如果识别成功
        # 显示车牌区域图像
        roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
        roi = Image.fromarray(roi)
        self.imgtk_roi = ImageTk.PhotoImage(image=roi)
        self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
        
        # 显示识别结果和车牌颜色
        self.r_ctl.configure(text=str(r))
        try:
            c = self.color_transform[color]
            self.color_ctl.configure(text=c[0], background=c[1], state='enable')
        except:
            self.color_ctl.configure(state='disabled')
    elif self.update_time + 8 < time.time():
        # 识别失败,8秒后清除显示
        self.roi_ctl.configure(state='disabled')
        self.r_ctl.configure(text="")
        self.color_ctl.configure(state='disabled')
  1. 图片选择与识别

python

运行

def from_pic(self):
    self.thread_run = False  # 停止可能正在运行的线程
    self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
    if self.pic_path:
        # 读取并显示原图
        img_bgr = predict.imreadex(self.pic_path)
        self.imgtk = self.get_imgtk(img_bgr)
        self.image_ctl.configure(image=self.imgtk)
        
        # 调用车牌识别器进行识别
        r, roi, color = self.predictor.predict(img_bgr)
        self.show_roi(r, roi, color)
程序入口

python

运行

if __name__ == '__main__':
    win = tk.Tk()
    surface = Surface(win)
    win.protocol('WM_DELETE_WINDOW', close_window)  # 窗口关闭处理
    win.mainloop()

效果展示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张謹礧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值