法1
如图所示,做P关于M对称点P' 联接AP' AQ HQ HP'
因为CE垂直AB BD垂直AC
所以EDCB四点共圆
则三角形AED相似于三角形ABC
三角形EHD相似于三角形BHC
因为CP'/EQ=BP/EQ=PC/QD=BC/ED=BM/EH
所以三角形AEQ与三角形AP'C相似
所以AQ/AP' =EQ/P'C=EQ/BP=QR/RP
且AQ AP'为角BAC等角线
三角形BPH与三角形EQH相似
同理可得 QH/HP'=QR/RP
由角平分线定理得
RH平分角QHP
又因为EH HP为角QHP等角线
所以RH平分角EHB
因为EH垂直AB HB垂直AC AL垂直RH
所以AL平分角BAC
所以AL平分角QAP'
因为AH垂直BC
RL垂直AH
所以RL平行于BC
设AL交QP于L'
所以AQ/AP'=QL'/L'P=QR/RP
所以RL'平行BC
所以L与L'重合
则QLP'共线 RL平行于PP' 且QM平分PP'
所以QM平分RL
证毕