认知实习第一天

本文介绍了人工智能的基本概念,重点阐述了机器学习,包括其定义、机器如何学习、深度学习的内涵以及AI、ML、DL的关系。讲解了数据集划分、监督与无监督学习、回归与分类问题,以及半监督学习和强化学习的应用。最后概述了机器学习建模的一般流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能简介及机器学习


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

人工智能

目录

人工智能简介及机器学习

文章目录

前言



前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、人工智能

1.什么是人工智能

人工智能,简称AI,全称为Artificial Intelligence,主要目的是为了仿智,用来代替人的大脑进行思考。

2.AI的期望

共有四条 1.Systems that think like humans 2.Systems that think rationally 3.Systems that act like humans 4.Systems that act rationally

二、机器学习

1.什么是机器学习?

Machine Learning机器学习

Field of study that gives computers the ability to learn withoutbeing explicitly programmed

2.机器如何学习

三、深度学习

1.什么是深度学习

深度学习(DL, Deep Learning):,也叫深度神经网络,大脑仿生,设计一层一层的神经元模拟万事万物

四、AI、ML、DL三者之间的关系

机器学习是实现人工智能的一种途径

深度学习是机器学习的一种方法

五、机器学习的常用术语

1.样本、特征、标签

样本(sample):一行数据就是一个样本;多个样本组成数据集;有时一条样本被叫成一条记录

特征(feature):一列数据一个特征,有时也被称为属性

标签/目标(label/target):模型要预测的那一列数据。本场景是就业薪资就业薪资与培训学科、作业考试、学历、工作经验、工作地点5个特征有关系

2.数据集划分

数据集可划分两部分:训练集、测试集比例:8:2,7:3

训练集(trainingset):用来训练模型(model)的数据集

测试集(testing set):用来测试模型的数据集

六、机器学习算法分类

1.有监督学习和无监督学习

有监督学习

定义:输入数据是由输入特征值和目标值所组成,即输入的训练数据有标签

数据集:需要标注数据的标签/目标值

无监督学习

定义:输入数据没有被标记,即样本数据类别未知,没有标签,根据样本间的相似性,对样本集聚类,以发现事物内部结构及相互关系。

2.有监督分类问题和回归问题

分类问题:目标值是不连续(离散)的

分类种类:二分类、多分类

回归问题:目标值是连续的

3.半监督学习

半监督学习工作原理:

1让专家标注少量数据,利用已经标记的数据(也就是带有类标签)训练出一个模型

2再利用该模型去套用未标记的数据

3通过询问领域专家分类结果与模型分类结果做对比,从而对模型做进一步改善和提高

思考有什么好处?半监督学习方式可大幅降低标记成本

4.强化学习

机器学习算法分类–强化学习

1强化学习(Reinforcement Learning):机器学习的一个重要分支

2应用场景:里程碑AlphaGo围棋、各类游戏、对抗比赛、无人驾驶场景

3基本原理:通过构建四个要素:agent,环境状态,行动,奖励,agent根据环境状态进行行动获得最多的累计奖励。

七、机器学习建模流程

有监督学习模型训练和模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值