认知实习第四天

本文探讨了如何使用交叉验证来分割数据并评估模型性能,以及网格搜索在寻找手写数字识别模型最佳超参数中的作用。通过实例说明,揭示了这两种技术在提高模型稳定性和精度中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超参数的选择方法


文章目录

  • 交叉验证
  • 网格搜索
  • 手写数字识别案例


一、交叉验证

什么是交叉验证?

是一种数据集的分割方法,分为一份验证集和n-1份训练集

原理:将每一份都作为一次验证集用来训练和评估,取平均值为模型得分

目的是为了得到更加准确可信的模型评分

二、网格搜索

为什么需要网格搜索?
用来寻找最优的超参数

三、手写数字识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值