试题 算法训练 区间最大和

问题描述

  给定一段长度为N的整数序列A,请从中选出一段连续的子序列(可以为0)使得这段的总和最大。

输入格式

  第一行一个整数N表示序列的长度
  第二行N个整数Ai表示序列的第i个元素

输出格式

  一个整数表示选出的最大的和

样例输入

4
3 -10 1 1

样例输出

3

数据规模和约定

  N<=100000,|Ai|<=100000

当时写这道题的时候,没什么思绪,看到某个大佬写了之后,恍然大悟,接下来,来浅谈一下,我对那个代码的理解(主要还是费曼学习法,来发表一下这个文章,加深记忆)

我们先来看代码好了,下面在给出分析

int n,qmax;
	cin>>n;
	int d[n]={0},dp[n]={0};
	for(int i=0;i<n;i++)cin>>d[i];
	qmax=d[0];dp[0]=d[0]; 
	for(int i=1;i<n;i++){
		dp[i]=max(dp[i-1]+d[i],d[i]);  //区间状态和当前状态的比较 
		qmax=max(qmax,dp[i]);  //区间最大状态的比较 
	}
	cout<<qmax;

数组d就是原始的区间数据,要找出区间内的最大值,这里用了一个辅助数dp,用来记录区间的状态,在用当前区间状态和当前状态进行比较,当前状态就是d[i],如果当前区间状态>当前状态,那就继续贪心,因为qmax是始终保持区间的最大值状态,所以可以一直保证区间的最大值。

下面以题目例子为例:
3 -10 1 1

先初始化qmax=3,dp[0]=3;

那么接下来步骤如下:

dp[1]=dp[0]+d[1]=3-10=-7      d[1]=-10    -7>-10  dp[1]=-7   qmax=(qmax,dp[1])=max(3,-7)=3;

dp[2]=dp[1]+d[2]=-3+1=-2      d[2]=1      -2<1   dp[2]=d[2]=1  qmax(qmax,dp[2])=max(3,1)=3;

dp[3]=dp[2]+d[3]=1+1=2     d[3]=1     2>1     dp[3]=dp[2]+d[3]=2   qmax(qmax,dp[3])=max(3,2)=3;

就是拿当前区间的状态当前d[i]的状态进行比较,如果当前区间状态 < 当前d[i]状态,那么当前区间状态就变为当前的d[i]的状态,在用qmax区间最大的状态当前区间状态在进行比较,确保qmax一定是区间的最大值状态    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值