问题描述
给定一段长度为N的整数序列A,请从中选出一段连续的子序列(可以为0)使得这段的总和最大。
输入格式
第一行一个整数N表示序列的长度
第二行N个整数Ai表示序列的第i个元素
输出格式
一个整数表示选出的最大的和
样例输入
4
3 -10 1 1
样例输出
3
数据规模和约定
N<=100000,|Ai|<=100000
当时写这道题的时候,没什么思绪,看到某个大佬写了之后,恍然大悟,接下来,来浅谈一下,我对那个代码的理解(主要还是费曼学习法,来发表一下这个文章,加深记忆)
我们先来看代码好了,下面在给出分析
int n,qmax;
cin>>n;
int d[n]={0},dp[n]={0};
for(int i=0;i<n;i++)cin>>d[i];
qmax=d[0];dp[0]=d[0];
for(int i=1;i<n;i++){
dp[i]=max(dp[i-1]+d[i],d[i]); //区间状态和当前状态的比较
qmax=max(qmax,dp[i]); //区间最大状态的比较
}
cout<<qmax;
数组d就是原始的区间数据,要找出区间内的最大值,这里用了一个辅助数dp,用来记录区间的状态,在用当前区间状态和当前状态进行比较,当前状态就是d[i],如果当前区间状态>当前状态,那就继续贪心,因为qmax是始终保持区间的最大值状态,所以可以一直保证区间的最大值。
下面以题目例子为例:
3 -10 1 1
先初始化qmax=3,dp[0]=3;
那么接下来步骤如下:
dp[1]=dp[0]+d[1]=3-10=-7 d[1]=-10 -7>-10 dp[1]=-7 qmax=(qmax,dp[1])=max(3,-7)=3;
dp[2]=dp[1]+d[2]=-3+1=-2 d[2]=1 -2<1 dp[2]=d[2]=1 qmax(qmax,dp[2])=max(3,1)=3;
dp[3]=dp[2]+d[3]=1+1=2 d[3]=1 2>1 dp[3]=dp[2]+d[3]=2 qmax(qmax,dp[3])=max(3,2)=3;
就是拿当前区间的状态和当前d[i]的状态进行比较,如果当前区间状态 < 当前d[i]状态,那么当前区间状态就变为当前的d[i]的状态,在用qmax区间最大的状态和当前区间状态在进行比较,确保qmax一定是区间的最大值状态