-
安装miniconda未将conda 添加到系统变量,所以在cmd下无法使用conda指令,只能在Anaconda Prompt下使用conda
-
conda的默认下载源好像被删除了,在虚拟环境下安装工具包时不成功就换其他源
-
vscode里C++的编译器和调试器已设置好,不要更改
-
编写python时解释器可以更换,CTRL+shift+P里找到python(Selected Interpreter)更换,conda创建的虚拟环境须手动寻找(envs文件夹下)
-
code runner插件在运行.py文件时出错(code=9009),已删除了该插件,但是也找到了解决方法(http://t.csdn.cn/z9JAW)
更改code-runner.executorMap(在settings里找),python下改为自己要使用的解释器的地址。
-
配置task.json文件,使用c++20标准进行编译
-
清理掉pip下载缓存和编译缓存
bash
pip cache purge
bash
rm -rf ~/.pypirc ~/.pydistutils.cfg
-
虚拟环境里使用外部依赖
比如TensorRT,在虚拟环境的 activate 脚本中修改路径。在虚拟环境的 bin/activate 文件末尾添加:
bash
#!/bin/sh
_CONDA_ROOT="/home/hang/lk/conda/anaconda3"
# Copyright (C) 2012 Anaconda, Inc
# SPDX-License-Identifier: BSD-3-Clause
. "$_CONDA_ROOT/etc/profile.d/conda.sh" || return $?
conda activate "$@"
# 设置TensorRT环境变量
export LD_LIBRARY_PATH=/path/to/tensorrt/lib:$LD_LIBRARY_PATH
export PYTHONPATH=/path/to/tensorrt/python:$PYTHONPATH
# 设置完之后推出虚拟环境再重新激活
把这两行export命令加在脚本最后,就是在激活conda环境后设置TensorRT的路径。这样每次激活这个环境,都会自动把TensorRT的库路径和Python路径加入到环境变量中,使该环境可以使用TensorRT。同时要确保TensorRT的whl包被安装:
# 找到TensorRT 目录下的whl文件(选对应py版本的,名字有提示)
pip install tensorrt-7.x.x.x-py2.py3-none-linux_x86_64.whl
# 将版本号替换
环境迁移
# 导出
conda list -e > requirements.txt
# 导入
conda install --yes --file requirements.txt
# 导出
conda env export > environment.yml
# 导入
conda env create -f environment.yml