灰狼优化算法求解多旅行商问题(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种基于群体智能的优化算法,灵感来源于灰狼的社会行为和捕猎策略。它通过模拟灰狼在自然环境中的狩猎、追踪和包围猎物的过程来搜索问题的最优解。灰狼优化算法因其简单、易于实现和在多种优化问题中展现出的良好性能而受到研究者的关注。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP)是经典旅行商问题(TSP)的扩展版本,它要求多个旅行商从同一出发点出发,访问一系列城市并最终返回起点,每个城市只能被访问一次,并且每个旅行商都要遍历一定数量的城市,目标是最小化所有旅行商的总行程距离。

将灰狼优化算法应用于多旅行商问题的步骤可以概括为以下几点:

  1. 初始化: 随机生成一组解(代表旅行商的路径),作为初始的狼群。每个解表示一个可能的路线分配,确保所有城市都被恰当地分配给了各个旅行商。

  2. 定义适应度函数: 适应度函数用于评估每个解的质量,通常是所有旅行商行程的总距离的最小化。

  3. 更新位置: 根据灰狼优化算法的核心机制,包括领导狼(α, β, δ)、跟随狼和其他狼群成员的动态交互,来更新每个解的位置。领导狼代表当前最优解,而其他狼则根据一定的规则调整自己的位置,试图接近这些领导狼。

  4. 搜索和更新最优解: 在每次迭代中,计算所有解的适应度值,并根据适应度更新领导狼。这个过程不断迭代,直到达到预设的迭代次数或满足停止条件。

  5. 终止条件: 当达到最大迭代次数或解决方案收敛到一定程度时,算法结束,并输出当前找到的最佳路径作为多旅行商问题的解决方案。

实现细节中,关键在于如何合理地设计解的编码方式以及如何根据MTSP的特点调整GWO的更新策略,确保算法既能高效搜索解空间,又能处理多旅行商之间路径的协调性,避免路径冲突同时优化整体成本。

值得注意的是,尽管GWO在某些问题上表现良好,但由于其随机性和启发式特性,对于复杂度极高的MTSP实例,可能需要进一步的策略改进或者与其他高级优化技术结合使用,以提高求解质量和效率。

📚2 运行结果

主函数部分代码:

tic
clear
clc
%% 输入数据
dataset=importdata('input.txt');                    %数据中,每一列的含义分别为[序号,x坐标,y坐标]
x=dataset(:,2);                                     %x坐标
y=dataset(:,3);                                     %y坐标
vertexs=dataset(:,2:3);                             %提取各个城市的xy坐标
n=size(dataset,1);                                  %城市数目
m=5;                                                %旅行商数目
start=1;                                            %起点城市
h=pdist(vertexs);                                   %计算各个城市之间的距离,一共有1+2+......+(n-1)=n*(n-1)/2个
dist=squareform(h);                                 %将各个城市之间的距离转换为n行n列的距离矩阵
%% 灰狼算法参数设置
NIND=32;                                            %灰狼个体数目
MAXGEN=200;                                         %最大迭代次数
k=m;                                                %移除相邻路径的数目
%% 初始化种群
population=init_pop(NIND,n,m,start);
init_obj=obj_function(population,n,m,start,dist);   %初始种群目标函数值
%% 灰狼优化
gen=1;                                              %计数器
best_alpha=zeros(MAXGEN,n+m-1);                     %记录每次迭代过程中全局最优灰狼个体
best_obj=zeros(MAXGEN,1);                           %记录每次迭代过程中全局最优灰狼个体的目标函数值
​
alpha_individual=population(1,:);                   %初始灰狼α个体
alpha_obj=init_obj(1);                              %初始灰狼α的目标函数值
beta_individual=population(2,:);                    %初始灰狼β个体
beta_obj=init_obj(2);                               %初始灰狼β的目标函数值
delta_individual=population(3,:);                   %初始灰狼δ个体
delta_obj=init_obj(3);                              %初始灰狼δ的目标函数值
while gen<=MAXGEN
    obj=obj_function(population,n,m,start,dist);    %计算灰狼种群目标函数值
    %% 确定当前种群中的灰狼α个体、灰狼β个体和灰狼δ个体
    for i=1:NIND
        %更新灰狼α个体
        if obj(i,1)<alpha_obj 
            alpha_obj=obj(i,1); 
            alpha_individual=population(i,:);
        end
        %更新灰狼β个体
        if obj(i,1)>alpha_obj && obj(i,1)<beta_obj 
            beta_obj=obj(i,1); 
            beta_individual=population(i,:);
        end
        %更新灰狼δ个体
        if obj(i,1)>alpha_obj && obj(i,1)>beta_obj && obj(i,1)<delta_obj 
            delta_obj=obj(i,1); 
            delta_individual=population(i,:);
        end
    end
    %% 更新当前种群中灰狼个体的位置
    for i=1:NIND
        r=rand;
        individual=population(i,:);                 %第i个灰狼个体
        %概率更新灰狼个体位置
        if r<=1/3
            new_individual=cross(individual,alpha_individual,n);
        elseif r<=2/3
            new_individual=cross(individual,beta_individual,n);
        else
            new_individual=cross(individual,delta_individual,n);
        end
        population(i,:)=new_individual;             %更新第i个灰狼个体
    end
    %% 局部搜索操作
    [alpha_individual,alpha_obj]=LocalSearch(alpha_individual,n,m,k,start,dist);
    [beta_individual,beta_obj]=LocalSearch(beta_individual,n,m,k,start,dist);
    [delta_individual,delta_obj]=LocalSearch(delta_individual,n,m,k,start,dist);
    %% 记录全局最优灰狼个体
    best_alpha(gen,:)=alpha_individual;             %记录全局最优灰狼个体
    best_obj(gen,1)=alpha_obj;                      %记录全局最优灰狼个体的目标函数值
    %% 打印当前代数全局最优解
    disp(['第',num2str(gen),'代最优解的目标函数值:',num2str(alpha_obj)])
    %% 更新计数器
    gen=gen+1;                                      %计数器加1
end
%% 打印每次迭代的全局最优灰狼个体的目标函数值变化趋势图
figure;
plot(best_obj,'LineWidth',1);
title('优化过程')
xlabel('迭代次数');
ylabel('行走总距离');
%% 将全局最优灰狼个体解码为旅行商行走路线方案
bestRP=decode(alpha_individual,n,m,start);          %将全局最优灰狼个体解码为旅行商行走方案
[bestTD,bestETD,bestMETD]=travel_distance(bestRP,dist);   %全局最优灰狼个体的目标函数值
%% 画出最终行走路线图
draw_Best(bestRP,vertexs,start);
toc

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

​[1]邓飞,魏祎璇,刘奕巧等.灰狼优化算法的改进及其应用[J].统计与决策,2023,39(11):18-24.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 29
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值