💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于粒子群算法(PSO)优化CNN-BiGRU-Attention风电功率预测研究是一个结合了多种先进技术的复杂课题,旨在提高风电功率预测的准确性和效率。以下是对该研究的详细分析:
一、研究背景与意义
在可再生能源领域,风电作为一种重要的清洁能源,其功率预测对于能源管理与优化具有重要意义。然而,由于风能的间歇性和不稳定性,传统的预测方法往往难以满足高精度和实时性的需求。因此,研究基于粒子群算法优化CNN-BiGRU-Attention模型的风电功率预测方法,对于提升预测精度、促进风能产业的健康发展具有重要意义。
二、研究方法与技术路线
1. 数据准备与预处理
- 数据收集:收集风电场的气象数据(如风速、风向、温度、湿度等)和历史功率数据。
- 数据预处理:包括数据清洗、缺失值处理、异常值检测与修正等,确保数据的质量和完整性。
2. 模型构建
- CNN模型:用于提取输入数据的空间特征,如风速、风向等气象数据的空间分布特性。
- BiGRU模型:作为循环神经网络的一种变体,BiGRU能够捕捉时间序列数据的前后文信息,适用于风电功率预测中的时序关系建模。
- Attention机制:帮助模型更加关注对预测结果影响较大的时间序列部分,提高预测精度。
3. 粒子群算法优化
- PSO算法简介:粒子群优化算法是一种基于群体智能的优化算法,通过模拟鸟群觅食行为来寻找最优解。该算法具有简单易实现、参数调节少等优点。
- 优化过程:利用PSO算法优化CNN-BiGRU-Attention模型中的超参数,如卷积核大小、隐藏单元数量、学习率等,以提高模型的预测性能。
4. 模型训练与评估
- 训练过程:使用训练集数据对模型进行训练,通过反向传播算法更新网络参数。
- 评估方法:使用测试集数据对训练好的模型进行评估,计算预测误差,如均方根误差(RMSE)、平均绝对误差(MAE)等,以评估模型的预测精度。
三、研究成果与结论
通过基于粒子群算法优化CNN-BiGRU-Attention模型的风电功率预测研究,可以显著提升预测精度和计算效率。具体成果可能包括:
- 预测精度提升:相比传统预测方法,优化后的模型在风速变化较大或复杂气象条件下表现出更好的预测稳定性和可靠性。
- 计算效率提高:通过优化模型结构和参数,减少计算复杂度,提高预测速度。
此外,该研究还可能为风电场的运行调度、电网规划和风能开发提供更加准确可靠的风电功率预测方法,促进风能产业的健康发展。
四、未来展望
尽管基于粒子群算法优化CNN-BiGRU-Attention模型在风电功率预测方面显示出强大潜力,但其高复杂度和计算成本仍然是实际应用中需要克服的问题。未来的研究可以探索更高效的算法或硬件加速技术来进一步推动其在工业界的应用。同时,随着数据量的不断增加和算法的不断优化,相信此类模型将在更多领域展现其独特价值。
📚2 运行结果
部分代码:
% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')
%% 优化CNN-BiGRU-Attention
disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')
%% 初始化参数
popsize=10; %初始种群规模
maxgen=8; %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2 2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10]; %参数的上限
dim = length(lb);%数量
% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';
[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);
%% 比较算法预测值
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980])
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560])
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = T_test;
Test_all = [];
y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0.66669 0.1206 0.108
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.
[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.
[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.
[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取