numpy和pandas学习,day1

numpy和pandas学习,day1



前言

Numpy(Numerical Python) 是 Python语言的一个第三方库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy是一个运行速度非常快的数学库,主要用于数组计算。

Pandas是基于NumPy数组构建的,也是Python语言的第三方库,Pandas使数据预处理、清洗、分析工作变得更快更简单,主要用于数据分析。

Pandas是专门为处理表格和混杂数据设计的,相当于Python的Excel,而Numpy更适合处理统一的数组数据。

Numpy和Pandas都是第三方库,需要预先安装好后才能导入使用,如果安装了Anaconda,则不必另外安装(因为Anaconda会自动安装很多数据分析用的第三方库)。

最近将和读者一起学习一下简单的numpy和pandas的用法

本文是第一篇。


一、正常导入需要的pandas和numpy包

import pandas as pd
import numpy as np

接下来我们将开始这两个包的简单讲解实例

二、使用步骤

1.创造DataFrame

在字典中以键值对的形式进行数据的编写,其中键是列名,值是列的值,列一般以数组的形式呈现,每一个键值对用逗号隔开。

data = {
   "grammer":['Python', 'C', 'Java', 'GO', np.NaN, 'SQL', 'PHP', 'Python'],
       "score":[1.0, 2.0, np.NaN, 4.0, 5.0, 6.0, 7.0, 10.0]}
df = pd.DataFrame(data)
df

在这里插入图片描述

2.读取符合要求的某一行数据

找出df中grammer列等于Python的行。

方法一好理解,方法二中的contains方法将返回布尔值,由于df中存在NAN,所以又加了一步fillna,将NAN的值全部替换为False,fillna的作用是替换列中的NAN值,将其替换为value,而inplace则是是否在原df上修改。

#方法一
df[df['grammer']=='Python']
# 方法二
result = df['grammer'].str.contains('Python'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值