numpy和pandas学习,day1
文章目录
前言
Numpy(Numerical Python) 是 Python语言的一个第三方库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy是一个运行速度非常快的数学库,主要用于数组计算。
Pandas是基于NumPy数组构建的,也是Python语言的第三方库,Pandas使数据预处理、清洗、分析工作变得更快更简单,主要用于数据分析。
Pandas是专门为处理表格和混杂数据设计的,相当于Python的Excel,而Numpy更适合处理统一的数组数据。
Numpy和Pandas都是第三方库,需要预先安装好后才能导入使用,如果安装了Anaconda,则不必另外安装(因为Anaconda会自动安装很多数据分析用的第三方库)。
最近将和读者一起学习一下简单的numpy和pandas的用法
本文是第一篇。
一、正常导入需要的pandas和numpy包
import pandas as pd
import numpy as np
接下来我们将开始这两个包的简单讲解实例
二、使用步骤
1.创造DataFrame
在字典中以键值对的形式进行数据的编写,其中键是列名,值是列的值,列一般以数组的形式呈现,每一个键值对用逗号隔开。
data = {
"grammer":['Python', 'C', 'Java', 'GO', np.NaN, 'SQL', 'PHP', 'Python'],
"score":[1.0, 2.0, np.NaN, 4.0, 5.0, 6.0, 7.0, 10.0]}
df = pd.DataFrame(data)
df

2.读取符合要求的某一行数据
找出df中grammer列等于Python的行。
方法一好理解,方法二中的contains方法将返回布尔值,由于df中存在NAN,所以又加了一步fillna,将NAN的值全部替换为False,fillna的作用是替换列中的NAN值,将其替换为value,而inplace则是是否在原df上修改。
#方法一
df[df['grammer']=='Python']
# 方法二
result = df['grammer'].str.contains('Python'

最低0.47元/天 解锁文章
186

被折叠的 条评论
为什么被折叠?



