欢迎观看、欢迎指正、共同学习
树
树是一种非线性结构
定义:用来模拟具有树状结构性质的数据集合
特点:
1、每个节点有零个或多个子节点
2、没有父节点的节点称为根节点
3、每一个非根节点有且只有一个父节点
4、除了根节点外,每个子节点可以分为多个不相交的子树
术语:
1、节点的度:一个节点含有的子节点的个数称为该节点的度
2、树的度:一棵树中,最大的节点的度称为树的度
3、叶节点或终端节点:度为零的节点
4、父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
5、孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点
6、兄弟节点:具有相同父节点的节点互称为兄弟节点
7、节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
8、树的高度或深度:树中节点的最大层次
9、堂兄弟节点:父节点在同一层的节点互为堂兄弟
10、节点的祖先:从根到该节点所经分支上的所有节点
11、子孙:以某节点为根的子树中任一节点都称为该节点的子孙
12、森林:由m(m>=0)棵互不相交的树的集合称为森林
应用场景:
1、xml,html等
2、路由协议就是使用了树的算法
3、mysql数据库索引
4、文件系统的目录结构
5、很多经典的AI算法其实都是树搜索
注意:大量、海量数据通过树存储,会加快检索速度。
树的种类
不同种类的树有不同的作用
种类
1、有序树:树中任意节点的子节点之间没有顺序关系
霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树
B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多于两个的子树
2、无序树:树中任意节点的子节点之间有顺序关系
3、二叉树:每个节点最多含有两个子树的树
二叉树
种类:
1、完全二叉树:除了第d(d>1)层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树
2、平衡二叉树:当且仅当任何节点的两棵子树的高度差不大于1的二叉树
3、排序二叉树
要求:
1.若左子树不空,则左子树上所有节点的值均小于它的根节点的值
2.若右子树不空,则右子树上所有节点的值均大于它的根节点的值
3.左、右子树也分别为二叉排序树
二叉树的存储:
1、顺序存储
2、链式存储
性质:
性质1: 在二叉树的第i层上至多有 2i次方-1 个结点(i>0)
性质2: 深度为k的二叉树至多有2k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N_0,而度数为2的结点总数为N_2 ,则N_0 = N_2+1
性质4: 最多有n个结点的完全二叉树的深度必为 log2(n+1)
性质5: 对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1 , 其父节点的编号必为i//2(i=1 时为根,除外)
二叉树广度优先遍历及三种深度遍历
yum:在线安装
rpm:离线安装
三种深度优先遍历:
1、先序:根左右
2、中序:左根右
3、后序:左右根
# 1.先定义类
# 定义节点类
class Node:
def __init__(self, item):
self.item = item
self.lchild = None
self.rchild = None
# 定义树类
class TwoXTree:
def __init__(self):
self.root = None
# 定义添加节点方法
# 注意: 只要添加成功就结束当前函数
def add(self, item):
# 1.先判断树的根节点是否为空
if self.root is None:
self.root = Node(item) # A
print(f'添加节点位置1,添加了{item}')
return
# 2.如果根节点存在了,后续需要再添加元素,需要判断左右
# 提前创建临时列表作为队列使用,以后从此队列中取出节点判断存放位置
queue = [self.root]
# 3.遍历队列,从队列中取出第一个元素,直到队列为空
# 注意: 边取边判断,同时再把最新节点放到队列中
while True:
# 取出队列中第一个元素(默认第一次是根节点,后面就是根节点的孩子们了...)
node = queue.pop(0)
# 如果当前节点左孩子为空,就把item所在节点添加到左孩子中,结束当前函数
if node.lchild is None:
node.lchild = Node(item) # B D F H J
print(f'添加节点位置2,添加了{item}')
return
# 如果当前节点右孩子为空,就把item所在节点添加到右孩子中,结束当前函数
elif node.rchild is None:
node.rchild = Node(item) # C E G I
print(f'添加节点位置3,添加了{item}')
return
else:
queue.append(node.lchild)
queue.append(node.rchild)
# 定义广度优先遍历方法
def breadth_travel(self):
# 1.先判断根节点是否为空,如果为空就没有遍历的必要了
if self.root is None:
print('对不起,二叉树为空,不能遍历')
return
# 创建队列,把根节点放入队列
queue = [self.root] # []
# 遍历队列,直到队列为空
while len(queue) > 0:
# 取出队列第一个元素
node = queue.pop(0)
# 打印元素
print(node.item, end=' ') # A B C D E F G H I J
# 判断左孩子是否存在,存在就放入队列
if node.lchild is not None:
queue.append(node.lchild)
if node.rchild is not None:
queue.append(node.rchild)
# 换行
print()
# 定义深度优先遍历方法
"""
注意: 深度优先有三种遍历方式:
先序(根左右):ABDHIEJCFG
中序(左根右):HDIBJEAFCG
后序(左右根):HIDJEBFGCA
递归思想: 函数内部自己调用自己,注意:必须有出口!!!
"""
# 先序(根左右): ABDHIEJCFG
def pre_travel(self, root):
# 注意:首次root是根节点,后续就是它的孩子们...
if root is not None:
# 根
print(root.item, end=' ')
# 左
self.pre_travel(root.lchild)
# 右
self.pre_travel(root.rchild)
# 中序(左根右): HDIBJEAFCG
def in_travel(self, root):
# 注意:首次root是根节点,后续就是它的孩子们...
if root is not None:
# 左
self.in_travel(root.lchild)
# 根
print(root.item, end=' ')
# 右
self.in_travel(root.rchild)
# 后序(左右根): HIDJEBFGCA
def back_travel(self, root):
# 注意:首次root是根节点,后续就是它的孩子们...
if root is not None:
# 左
self.back_travel(root.lchild)
# 右
self.back_travel(root.rchild)
# 根
print(root.item, end=' ')
if __name__ == '__main__':
# 2.再根据类创建对象
tree = TwoXTree()
# 3.使用对象
# 测试添加功能
tree.add('A')
tree.add('B')
tree.add('C')
tree.add('D')
tree.add('E')
tree.add('F')
tree.add('G')
tree.add('H')
tree.add('I')
tree.add('J')
print('---------------------------------')
# 测试广度优先遍历功能
tree.breadth_travel()
print('---------------------------------')
# 测试深度优先遍历功能
# 先序(根左右): ABDHIEJCFG
tree.pre_travel(tree.root)
print()
# 中序(左根右): HDIBJEAFCG
tree.in_travel(tree.root)
print()
# 后序(左右根): HIDJEBFGCA
tree.back_travel(tree.root)
print()