主数据不仅是企业跨部门协作的“通用语言”,更是支撑智能决策的基石。虽然很多企业已经意识到了主数据的价值和重要性,但是由于企业内部有非常非常多的数据,如何高效识别主数据是摆在面前的第一道难题。本文将结合真实案例,揭示这一过程的实战方法论。
首先我们要认识到主数据的特点,主数据是企业核心业务实体的基础信息,例如客户、供应商、物料、设备等。它具备跨系统共享、长期有效、高稳定性的特征。以某煤矿企业为例,其主数据包括设备基础数据、部门信息、物料分类等,这些数据贯穿从设计、采购到开采的全流程。若缺乏统一的主数据管理,不同系统中的“一物多码”问题(如同一设备在不同系统中有不同编码)会导致采购混乱、库存冗余,甚至影响安全生产。
当然主数据这些特征是比较抽象的,我们一般也很难进行量化,例如跨系统共享,到底跨多少个系统算高共享?长期有效到底多久不会发生变化才算长期呢?
接下来我们就要按照三个步骤(挖矿-筛选-验证)尽可能的量化对主数据的识别工作:
1、业务领域梳理:从流程中“挖矿”。主数据源于业务场景,识别需从业务领域切入。以某制造企业为例,首先需梳理业务流程(如采购、生产、销售),提取每个环节的实体对象。例如,在采购流程中,“物料”“供应商”“合同”是关键实体;在人力资源流程中,“人员”“部门”是核心。脱离业务场景的识别,就是意淫YY,如果主数据压根没人去用,即使有人提需求,那我们也可以判断是“伪需求”。
2、主题分类与依赖关系:划分“黄金”与“砂石”。主数据可分为管理类与业务类两类。管理类数据(如国家信息、会计科目)具有行业通用性;业务类数据(如客商、合同)则体现企业特性。管理类主数据相对标准明确,我们大部分可以直接套用。难点一般是业务类的主数据,因为业务场景的变化,企业内部的变更调整都给业务主数据的建设带来不小的难度。
以某零售企业为例,其“门店信息”涉及直营与加盟两套系统,需通过依赖关系分析确定主数据来源:若直营与加盟系统业务无交集,可同时作为主数据源(强依赖);而“人员信息”则需由主数据平台统一维护(弱依赖),避免HR与OA系统数据冲突。
3、定性与定量分析:用数据验证“含金量”。定性分析基于主数据的定义,例如“跨部门共享性”“低变更频率”;定量分析则通过UC矩阵(使用-创建矩阵)识别数据共享强度。例如,某企业发现“物料数据”在采购、仓储、生产系统中均被高频使用,但“安全数据”仅由安监部门创建,使用范围有限,从而将前者列为主数据。我们还可以通过评分模型(权重指标包括共享度、业务价值、复杂性)量化评估,最终确定会计科目、设备编码等为核心主数据。
主数据识别目前大部分还是通过同行标杆案例借鉴,专家判断等手段。依赖专家经验,耗时长、成本高。当然,我们也可以借鉴一些技术手段(例如数据库筛查、数据血缘溯源、算法建模自动识别)去进行主数据识别,达到相对客观,提升效率的目的。
主数据并不是识别的越多越好,识别也不是终点,而是数据治理的起点。通过精准识别,企业可构建唯一可信数据源,为智能分析、跨系统协同奠定基础。识别的目的,以及工具的价值在于将“数据黄金”从理论概念转化为业务驱动力,这才是终极目标。