数据分析基础:数据可视化+数据分析报告(Python实现)

本文介绍了Python数据可视化的基础,重点讲解了使用matplotlib库进行图表绘制,包括设置画布、坐标轴、标题、图例和数据标签等。同时,提到了数据分析报告的结构,包括背景、目的、分析思路、正文、结论和附录等。
摘要由CSDN通过智能技术生成

提示:数据展现用来直观高效地向他人展示数据分析结果,也称数据可视化。本文介绍通过Python如何快速调用第三方库实现数据可视化。

本文内容为日常学习记录,提供了最基础的Python数据可视化实现方式,有兴趣可通过Python自主实现,并逐渐深入。

一、数据可视化实现方式

Python 作为一种编程语言,通过调用第三方可视化库作图,覆盖的图表种类很多,定制化非常强,并且免费。再加上 Python 基本涵盖了数据分析的整个流程:从数据处理到数据分析,再到数据展现。可以说是行云流水,一气呵成。所以我们选择使用Python 来做数据展现。在 Python 中有几个常用的第三方可视化库:pandas、matplotlib 以及 seaborn。

本文通过matplotlib库实现数据可视化,matplotlib库相较于 pandas 绘图以及 seaborn 绘图工具更为底层,因此,matplotlib库中的绘图函数、参数相对更多,我们可以根据自己的风格自由选择。从应用范围上来看,在 Python 数据分析领域,matplotlib 库是与 numpy 库、pandas 库并驾齐驱的三库之一,被称作 Python 数据分析的“三剑客”,由此可见其应用范围之广。

二、使用matplotlib库绘图

1.生成画布
一个完整的图形除了图表,还包括一系列的图表元素:图表标题、坐标轴刻度、坐标轴标题、图例以及数据标签。
生成画布用到的是pyplot模块下的figure函数,即plt.figure()。其中的参数 figsize 可以控制画布的长和宽,一般用元组的形式进行赋值。

2.设置x/y坐标值
绘制图表时,先确定好坐标点,再经由绘图函数就能生成我们熟知的折线图、柱状图等图表。
x是指坐标点的横坐标(简称x坐标值),y是指坐标点的纵坐标(简称y坐标值),它们均为可迭代对象,你可以理解为有序的元素序列,比如 x = (x1, x2, x3, ……, xn),y = (y1, y2, y3, ……, yn)。

3.绘制折线图和柱状图
绘制柱状图也需要设置 x/y 坐标值,不同的是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值