《PyTorch深度学习实践》-刘二大人-第五讲-用pytorch实现线性回归

B站传送门刘二大人PyTorch第五讲

代码中定义了一个线性模型的类,通过MSE计算损失,通过优化器SGD更新w和b的值,最后输出结果

import torch

x_data=torch.tensor([[1.0],[2.0],[3.0]])
y_data=torch.tensor([[3.0],[5.0],[7.0]])

class LinearnModel(torch.nn.Module):
    def __init__(self):
        # 构造函数
        super(LinearnModel,self).__init__()
# super用于调用父类,super(A,self)._init_()这其中self表示从self开始的方法解析序列,而A是从A开始向父类中寻找_init_()方法

        self.linear=torch.nn.Linear(1,1)
# nn.Linear(in_featrue,out_featrue,bias),第一个是输入Tensor最后一维的通道数,第二个是输出的通道数,第三个(bool型)是是否添加bias默认为true


    def forward(self,x):
        y_pred=self.linear(x)
# 也就是=y=wx+b
        return y_pred

model=LinearnModel()

criterion=torch.nn.MSELoss(size_average=False)
# MSRLoss(size_acerage,reduce=True),第一个参数是否求均值,第二个参数考虑是否求和降维
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
# model.parameters()会自动更新weight和bias的值,lr是学习率

for epoch in range(100):
    y_pred=model(x_data)
# 开始用x_data的值计算预测值
    loss=criterion(y_pred,y_data)
    # 计算损失
    print(epoch,loss.item())

    optimizer.zero_grad()
    # 将所有权重的梯度归零
    loss.backward()
    # 反向传播
    optimizer.step()
    # 更新

print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())

x_test=torch.tensor([[4.0]])
y_test=model(x_test)
print('y_pred=',y_test.data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值