变幻的矩阵

描述

有一个N x N(N为奇数,且1 <= N <= 10)的矩阵,矩阵中的元素都是字符。这个矩阵可能会按照如下的几种变幻法则之一进行变幻(只会变幻一次)。

现在给出一个原始的矩阵,和一个变幻后的矩阵,请编写一个程序,来判定原始矩阵是按照哪一种法则变幻为目标矩阵的。

1. 按照顺时针方向旋转90度;
如:

1 2 3        7 4 1
4 5 6 变幻为  8 5 2
7 8 9        9 6 3


2. 按照逆时针方向旋转90度;
如:

1 2 3        3 6 9
4 5 6 变幻为  2 5 8
7 8 9        1 4 7 


3. 中央元素不变(如下例中的 5),其他元素(如下例中的3)与“以中央元素为中心的对应元素”(如下例中的7)互换;
如:

1 2 3       9 8 7
4 5 6 变幻为 6 5 4
7 8 9       3 2 1 


4. 保持原始矩阵,不变幻;

5. 如果 从原始矩阵 到 目标矩阵 的变幻,不符合任何上述变幻,请输出5

输入

第一行:矩阵每行/列元素的个数 N;
第二行到第N+1行:原始矩阵,共N行,每行N个字符;
第N+2行到第2*N+1行:目标矩阵,共N行,每行N个字符;

输出

只有一行,从原始矩阵 到 目标矩阵 的所采取的 变幻法则的编号。

样例输入

5
a b c d e
f g h i j
k l m n o
p q r s t
u v w x y
y x w v u
t s r q p
o n m l k
j i h g f
e d c b a

样例输出

3

主程序:

#include <bits/stdc++.h>
using namespace std;
char a[12][12],b[12][12];
int main() {
	int n,i,j,aa = 1,bb = 1,cc = 1,dd = 1;
	cin >> n;
	for(i = 0;i < n;i++)
	{
		for(j = 0;j < n;j++)
		{
			cin >> a[i][j];
		}
	}
	for(i = 0;i < n;i++)
	{
		for(j = 0;j < n;j++)
		{
			cin >> b[i][j];
		}
	}
	for(i = 0;i < n;i++)
	{
		for(j = 0;j < n;j++)
		{
			if(aa && a[i][j] != b[i][j])
			{
				aa = 0;
			}
			if(cc && b[i][j] != a[j][n - i - 1])
			{
				cc = 0;
			}
			if(bb && b[i][j] != a[n - j - 1][i])
			{
				bb = 0;
			}
			if(dd && b[i][j] != a[n - i - 1][n - j - 1])
			{
				dd = 0;
			}
		}
	} 
	if(aa)
	{
		cout << "4" << endl;
	}
	if(bb)
	{
		cout << "1" << endl;
	}
	if(cc)
	{
		cout << "2" << endl;
	}
	if(dd)
	{
		cout << "3" << endl;
	}
	if(aa == 0 && bb == 0 && cc == 0 && dd == 0)
	{
		cout << "5" << endl;
	}
	return 0;
}
### C++ 实现检测两个 N×N 矩阵间的变换规则 以下是基于问题需求设计的一个完整的解决方案,该方案能够判断两个矩阵之间的关系是否满足以下四种情况之一: 1. **无变化**:目标矩阵与原矩阵完全相同。 2. **顺时针旋转 90°**:通过一次顺时针旋转得到目标矩阵。 3. **逆时针旋转 90°**:通过一次逆时针旋转得到目标矩阵。 4. **中心对称交换**:通过水平翻转再垂直翻转(或等效操作)得到目标矩阵。 #### 解决思路 为了验证上述四种可能的关系,可以通过模拟这些变换并逐一比较结果。具体方法如下: - 验证“无变化”直接对比两矩阵是否相等[^1]。 - 对于“顺时针旋转”,按照给定逻辑实现矩阵的顺时针旋转,并检查其结果是否匹配目标矩阵[^4]。 - “逆时针旋转”可通过两次顺时针旋转加额外的一次反转实现。 - 中心对称交换则涉及行列互换后再整体翻转的操作。 下面是具体的 C++ 实现代码: ```cpp #include <iostream> #include <vector> using namespace std; // 判断两个矩阵是否相等 bool areEqual(const vector<vector<int>>& A, const vector<vector<int>>& B) { if (A.size() != B.size()) return false; int n = A.size(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (A[i][j] != B[i][j]) return false; } } return true; } // 执行顺时针旋转 90 度 void rotateClockwise(vector<vector<int>>& mat) { int n = mat.size(); for (int i = 0; i < n / 2; ++i) { for (int j = i; j < n - i - 1; ++j) { int temp = mat[i][j]; mat[i][j] = mat[n - 1 - j][i]; mat[n - 1 - j][i] = mat[n - 1 -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值