深度学习总结

本文介绍了感知机的基本概念,作为神经网络的起源,它使用二元线性分类和阶跃函数。还详细讲解了简单逻辑门如与门、或门、异或门的工作原理,以及激活函数在神经网络中的关键作用,强调了非线性和ReLU等现代激活函数的重要性。
摘要由CSDN通过智能技术生成

1.什么是感知机

感知机是一种二元线性分类模型,由美国学者Frank Rosenblatt在1957年提出来的。它是作为神经网络(深度学习)的起源的算法之一,也是学习通向神经网络和深度学习的一种重要思想。感知机接收多个输入信号,输出一个信号。这里所说的“信号”可以想象成电流或河流那样具备“流动性”的东西。像电流流过导线,向前方输送电子一样,感知机的信号也会形成流,向前方输送信息。但是,和实际的电流不同的是,感知机的信号只有“流/不流”(1/0)两种取值。

x1、 x2是输入信号,y是输出信号, w1、 w2是权重。图中的⚪圈称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1x1、 w2x2)。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活” 。

w称为权重:控制输入信号的重要性的参数 b称为偏置:偏置是调整神经元被激活的容易程度参数

2.简单逻辑电路

2.1与门真值表

如图所示,与门仅在两个输入均为1时输出1,其他时候则输出0。

                      

2.2与非门真值表

如下图所示,仅当x1和x2同时为1时输出0,其他时候则输出1。

2.3或门真值表

或门是“只要有一个输入信号是1,输出就为1”的逻辑电路。

2.4异或门真值表

异或门也被称为逻辑异或电路。如图2-5所示,仅当x1或x2中的一方为1时,才会输出1(“异或”是拒绝其他的意思)。

3.激活函数

激活函数是神经网络中的一种非线性函数,它的作用是将输入信号转换为输出信号,常用于神经网络的隐藏层和输出层。激活函数的主要作用是引入非线性因素,使神经网络可以拟合非线性函数,从而提高模型的表达能力和预测精度。常见的激活函数包括Sigmoid、Tanh、ReLU、Softplus、Mish等。其中,Sigmoid和Tanh函数在深度学习中已经不再常用,ReLU是目前最常用的激活函数之一,而Softplus和Mish则是近年来提出的新型激活函数。

激活函数在神经元中非常重要的。为了增强网络的表示能力和学习能力,激活函数需要具备以下几点性质: (1) 连续并可导(允许少数点上不可导)的非线性函数。 (2) 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率。 (3) 激活函数的导函数的值域要在一个合适的区间内,不能太大也不能太小,否则会影响训练的效率和稳定性。

阶跃函数在信号处理、控制系统和神经网络等领域中都有广泛的应用。在神经网络中,阶跃函数通常被用作激活函数,将输入信号转换为输出信号。此外,阶跃函数还可以通过叠加不同位置处的阶跃函数来逼近原函数,这在机器学习中也有广泛的应用。

可以说感知机使用了阶跃函数作为激活函数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值