数论基础——operator_

1.裴蜀定理

对于不定方程 a x + b y = c , ax+by=c, ax+by=c,有整数解的的充要条件是 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)|c gcd(a,b)c

也可写成 a x + b y ≡ 0 ( m o d    gcd ⁡ ( a , b ) ) ax+by \equiv 0(\mod{\gcd (a,b)}) ax+by0(modgcd(a,b))

证明:

1.证充分:令 d = gcd ⁡ ( a , b ) , d ∣ a d=\gcd(a,b),d|a d=gcd(a,b),da d ∣ b , d|b, db, a = t 1 d , b = t 2 d , a=t_1d,b=t_2d, a=t1d,b=t2d,那么 c = t 1 x d + t 2 y d , d ∣ c c=t_1xd+t_2yd,d|c c=t1xd+t2yd,dc

2.证必要:设 a x + b y ax+by ax+by最小正值为 S , S, S, a = p S + m , m = a m o d    s ( S > m ≥ 0 ) a=pS+m,m=a\mod s(S>m\ge 0) a=pS+m,m=amods(S>m0)

m = a − p S = a − p ( a x 0 + b y 0 ) = a − p a x 0 − p b y 0 = a ( 1 − p x 0 ) + b ( − p y 0 ) m=a-pS=a-p(ax_0+by_0)=a-pax_0-pby_0=a(1-px_0)+b(-py_0) m=apS=ap(ax0+by0)=apax0pby0=a(1px0)+b(py0)

发现 m m m a x + b y ax+by ax+by的某值,所以 m = 0 m=0 m=0才不矛盾

所以 S ∣ a , S|a, Sa,同理 S ∣ b , S|b, Sb, S ∣ gcd ⁡ ( a , b ) , S = gcd ⁡ ( a , b ) S|\gcd(a,b),S=\gcd(a,b) Sgcd(a,b),S=gcd(a,b)

几乎是模板:普及/提高-【模板】裴蜀定理

n = 2 , n=2, n=2,显然有 S = gcd ⁡ ( A 1 , A 2 ) ; S=\gcd(A_1,A_2); S=gcd(A1,A2);

n = 3 , S = A 1 x 1 + A 2 x 2 + A 3 x 3 , n=3,S=A_1x_1+A_2x_2+A_3x_3, n=3,S=A1x1+A2x2+A3x3,

A 1 x 1 + A 2 x 2 = y 1 ∗ gcd ⁡ ( A 1 , A 2 ) A_1x_1+A_2x_2=y_1*\gcd(A_1,A_2) A1x1+A2x2=y1gcd(A1,A2)

S = gcd ⁡ ( A 1 , A 2 ) y 1 + A 3 x 3 S=\gcd(A_1,A_2)y_1+A_3x_3 S=gcd(A1,A2)y1+A3x3

再来一次裴蜀定理,就有 S = gcd ⁡ ( A 1 , A 2 , A 3 ) S=\gcd(A_1,A_2,A_3) S=gcd(A1,A2,A3)

可以由归纳法推广至正整数域: S = gcd ⁡ ( A 1 , A 2 ⋯ A n ) S=\gcd(A_1,A_2\cdots A_n) S=gcd(A1,A2An)

2.拓展欧几里得

用于求解形如 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)的方程问题。

证明:

设原方程为 a X + b Y = gcd ⁡ ( a , b ) aX+bY=\gcd(a,b) aX+bY=gcd(a,b)

b x + ( a % b ) y = gcd ⁡ ( b , a % b ) bx+(a\%b)y=\gcd(b,a\%b) bx+(a%b)y=gcd(b,a%b)

有$a%b=a- \lfloor{{a}\over{b}}\rfloor*b $

所以 b x + ( a − ⌊ a b ⌋ ∗ b ) y = a X + b Y bx+(a-\lfloor{{a}\over{b}}\rfloor*b)y=aX+bY bx+(abab)y=aX+bY

a y + b ( x − ⌊ a b ⌋ y ) = a X + b Y ay+b(x-\lfloor{{a}\over{b}}\rfloor y)=aX+bY ay+b(xbay)=aX+bY

X = y , Y = x − ⌊ a b ⌋ y X=y,Y=x-\lfloor{{a}\over{b}}\rfloor y X=y,Y=xbay

最后考虑一下边界即可。

几乎是模板:普及+/提高[NOIP2012 提高组] 同余方程

e x g c d ( ) exgcd() exgcd()先求得 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)的一组解 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)

设另一组解为 x 1 , y 1 x_1,y_1 x1,y1

则由 a x 0 + b y 0 = gcd ⁡ ( a , b ) ax_0+by_0=\gcd(a,b) ax0+by0=gcd(a,b) a x 1 + b y 1 = gcd ⁡ ( a , b ) ax_1+by_1=\gcd(a,b) ax1+by1=gcd(a,b)

a ( x 0 − x 1 ) + b ( y 0 − y 1 ) = 0 a(x_0-x_1)+b(y_0-y_1)=0 a(x0x1)+b(y0y1)=0

a ( x 0 − x 1 ) = − b ( y 0 − y 1 ) a(x_0-x_1)=-b(y_0-y_1) a(x0x1)=b(y0y1)

x 1 = x 0 + i , y 1 = y 0 + j x_1=x_0+i,y_1=y_0+j x1=x0+i,y1=y0+j

就有 a i = − b j , i = − ⌊ a b ⌋ ∗ j ai=-bj,i=-\lfloor{{a}\over{b}}\rfloor *j ai=bj,i=baj

因为 i i i为最小整数 , a ∣ j ∗ b , j ,a|j*b,j ,ajb,j的最小值为 a / gcd ⁡ ( a , b ) a/\gcd(a,b) a/gcd(a,b)

同理 i i i的最小值为 b / gcd ⁡ ( a , b ) b/\gcd(a,b) b/gcd(a,b)

所以可得到原方程通解 { x = x 0 + t ∗ b / gcd ⁡ ( a , b ) y = y 0 + t ∗ a / gcd ⁡ ( a , b ) \begin{cases}x=x_0+t*b/\gcd(a,b)\\y=y_0+t*a/\gcd(a,b) \end{cases} {x=x0+tb/gcd(a,b)y=y0+ta/gcd(a,b)

不过本题只要输出 ( x + b / gcd ⁡ ( a , b ) ) % ( b / gcd ⁡ ( a , b ) ) (x+b/\gcd(a,b))\%(b/\gcd(a,b)) (x+b/gcd(a,b))%(b/gcd(a,b))

P S . PS. PS. 可以推广得到任意方程的通解

习题:

提高+/省选-青蛙的约会

3.乘法逆元

在一般情况下,若 a ∗ x = 1 a*x=1 ax=1 b b b a a a的倒数

对应的,乘法逆元的定义:若 a ∗ x ≡ 1 ( m o d    p ) a*x\equiv1(\mod p) ax1(modp),则称 x x x a a a在模 p p p意义下的乘法逆元 , , ,记作 a − 1 ( m o d    p ) a^{-1}(\mod p) a1(modp)

显然 , , , p ∣ a p|a pa a = 0 a=0 a=0则没有逆元 , , ,同时逆元也可能不止一个。

求解方法:

1.拓展欧几里得

由定义: a x ≡ 1 ( m o d    p ) ax\equiv1(\mod p) ax1(modp)

则可设 a x + p y = 1 , ax+py=1, ax+py=1,解方程即可。

2.费马小定理

不会证qwq

p p p为质数且 a a a为整数 , , , a a a在模 p p p意义下的乘法逆元为 a p − 2 % p , a^{p-2}\%p, ap2%p,一般快速幂求解。

3.递推

i n v [ i ] inv[i] inv[i] i i i在模 p p p意义下的乘法逆元 , , ,显然有 i n v [ 1 ] = 1 inv[1]=1 inv[1]=1

设已知 1 , 2 , ⋯   , i − 1 1,2,\cdots ,i-1 1,2,,i1的逆元

k = ⌊ p i ⌋ , r = p % i , k=\lfloor{{p}\over{i}}\rfloor,r=p\%i, k=ip,r=p%i, p = k ∗ i + r ( 1 ≤ r < i ) p=k*i+r(1\le r<i) p=ki+r(1r<i)

k ∗ i + r ≡ 0 ( m o d    p ) k*i+r\equiv0(\mod p) ki+r0(modp)

k ∗ i ∗ r − 1 + 1 ≡ 0 ( m o d    p ) k*i*r^{-1}+1\equiv0(\mod p) kir1+10(modp)

i − 1 ≡ − k ∗ r − 1 ( m o d    p ) i^{-1}\equiv -k*r^{-1}(\mod p) i1kr1(modp)

最小正数解: i − 1 ≡ − ⌊ p i ⌋ ∗ ( p m o d    i ) − 1 ( m o d    p ) i^{-1}\equiv -\lfloor{{p}\over{i}}\rfloor *(p\mod i)^{-1}(\mod p) i1ip(pmodi)1(modp)

4.阶乘逆推

原理是 1 k = ( k − 1 ) ! k ! {{1}\over{k}}={{(k-1)!}\over{k!}} k1=k!(k1)! 1 ( k − 1 ) ! = k k ! {{1}\over{(k-1)!}}={{k}\over{k!}} (k1)!1=k!k

f [ i ] = ( i ! ) % p , d [ i ] = ( i ! ) − 1 f[i]=(i!)\%p,d[i]=(i!)^{-1} f[i]=(i!)%p,d[i]=(i!)1

显然 f [ ] f[] f[]循环一遍就行 , d [ i ] ,d[i] ,d[i]的话就先用 e x g c d ( ) exgcd() exgcd()或费马小定理求出 d [ n ] , d[n], d[n],再由 d [ i − 1 ] = i ∗ d [ i ] % p d[i-1]=i*d[i]\%p d[i1]=id[i]%p倒序求即可

那么 i n v [ k ] = ( k − 1 ) ! k ! = ( k − 1 ) ! ∗ 1 k ! ≡ f [ k − 1 ] ∗ d [ k ] ( m o d    p ) inv[k]={{(k-1)!}\over{k!}}=(k-1)!*{{1}\over{k!}}\equiv f[k-1]*d[k](\mod p) inv[k]=k!(k1)!=(k1)!k!1f[k1]d[k](modp)

相较于递推法 , , ,本方法可以求解任意 n n n个数的逆元

习题

普及+/提高【模板】有理数取余

普及/提高-【模板】乘法逆元

虽然但是,个人感觉第一题比第二题简单

4.中国剩余定理(CRT)

有如下的一组同余方程组:

x ≡ a 1 ( m o d m 1 ) x\equiv a_1 \pmod {m_1} xa1(modm1)

x ≡ a 2 ( m o d m 2 ) x\equiv a_2 \pmod {m_2} xa2(modm2)

⋮ \vdots

x ≡ a n ( m o d m n ) x\equiv a_n \pmod {m_n} xan(modmn)

满足 gcd ⁡ ( m 1 , m 2 , … , m n ) = 1 \gcd(m_1,m_2,\dots ,m_n)=1 gcd(m1,m2,,mn)=1

解法:

1. 1. 1. M = m 1 ∗ m 2 ∗ ⋯ ∗ m n M=m_1*m_2*\dots *m_n M=m1m2mn M i = M / m i M_i=M/m_i Mi=M/mi 。则有 M i ⊥ m i M_i\perp m_i Mimi

2. 2. 2. e x g c d exgcd exgcd 求出 M i M_i Mi 关于 m i m_i mi 的逆元 t i t_i ti

3. 3. 3. 求得同余方程组的特解 x 0 = ∑ i = 1 i ≤ n a i ∗ M i ∗ t i x_0=\sum_{i=1}^{i\le n} a_i*M_i*t_i x0=i=1inaiMiti

证明:

显然,对于 ∀ i \forall i i ∀ j ≠ i \forall j\neq i j=i m i ∣ M j m_i|M_j miMj

∴ x 0 ≡ a i ∗ M i ∗ t i ≡ a i ( m o d m i ) \therefore x_0\equiv a_i*M_i*t_i\equiv a_i\pmod{m_i} x0aiMitiai(modmi)

∴ x 0 \therefore x_0 x0 确实是一个特解。

4. 4. 4. 求得同余方程组的通解 x = x 0 + k ⋅ M x=x_0+k\cdot M x=x0+kM

证明:

使用反证法,假设除了 x = x 0 + k ⋅ M x=x_0+k\cdot M x=x0+kM 还有其他解 x ′ x^\prime x ,就有 x ≡ a i ( m o d m i ) x\equiv a_i\pmod{m_i} xai(modmi) x ′ ≡ a i ( m o d m i ) x^\prime\equiv a_i\pmod{m_i} xai(modmi)

两式相减, x − x ′ ≡ 0 ( m o d m i ) x-x^\prime\equiv0\pmod{m_i} xx0(modmi) m i ∣ x − x ′ m_i|x-x^\prime mixx

∴ \therefore 对于 ∀ i \forall i i , 有 m i ∣ x − x ′ m_i|x-x^\prime mixx 。又 m i m_i mi 两两互质,那么 lcm ⁡ ( m 1 , m 2 , … , m n ) = M \operatorname{lcm}(m_1,m_2,\dots,m_n)=M lcm(m1,m2,,mn)=M

∴ M ∣ x − x ′ \therefore M|x-x^\prime Mxx x ′ = x + c ⋅ M = x 0 + k ⋅ M x^\prime=x+c\cdot M=x_0+k\cdot M x=x+cM=x0+kM

得证。

习题:

P1495 【模板】中国剩余定理(CRT)/ 曹冲养猪

P3868 [TJOI2009] 猜数字

5.拓展中国剩余定理(EXCRT)

同上的一组同余方程组,但是 m i m_i mi 不再两两互质。

解法:

考虑前 2 2 2 个方程: s ≡ a 1 ( m o d m 1 ) s\equiv a_1\pmod {m_1} sa1(modm1) s ≡ a 2 ( m o d m 2 ) s\equiv a_2\pmod {m_2} sa2(modm2)

∴ s = m 1 ∗ x + a 1 = m 2 ∗ y + a 2 \therefore s=m_1*x+a_1=m_2*y+a_2 s=m1x+a1=m2y+a2

m 1 ∗ x + m 2 ∗ ( − y ) = a 2 − a 1 m_1*x+m_2*(-y)=a_2-a_1 m1x+m2(y)=a2a1

之所以可以把 y y y 变成 − y -y y 是因为我们只关心 x x x 的取值。

e x g c d exgcd exgcd 求出最小正整数解 x 0 x_0 x0 ,那么前两个方程的通解为 x = x 0 + k ⋅ m 2 gcd ⁡ ( m 1 , m 2 ) x=x_0+k\cdot{{m_2}\over{\gcd(m_1,m_2)}} x=x0+kgcd(m1,m2)m2

∴ s \therefore s s 的通解 s = m 1 ∗ x 0 + k ⋅ m 1 m 2 gcd ⁡ ( m 1 , m 2 ) + a 1 = m 1 ⋅ x 0 + a 1 + k ⋅ lcm ⁡ ( m 1 , m 2 ) s=m_1*x_0+k\cdot{{m_1m_2}\over{\gcd(m_1,m_2)}}+a_1=m_1\cdot x_0+a_1+k\cdot\operatorname{lcm}(m_1,m_2) s=m1x0+kgcd(m1,m2)m1m2+a1=m1x0+a1+klcm(m1,m2)

所以前 2 2 2 个方程可以合并为新的同余方程 s ≡ m 1 ∗ x 0 + a 1 ( m o d lcm ⁡ ( m 1 , m 2 ) ) s\equiv m_1*x_0+a_1\pmod{\operatorname{lcm}(m_1,m_2)} sm1x0+a1(modlcm(m1,m2))

那么就可以不断合并,最终得到 s ≡ A ( m o d lcm ⁡ ( m 1 , m 2 , … , m n ) ) s\equiv A\pmod{\operatorname{lcm}(m_1,m_2,\dots,m_n)} sA(modlcm(m1,m2,,mn))

习题:

P4777 【模板】扩展中国剩余定理(EXCRT)

6.欧拉函数

前置知识:

3 3 3 种普通筛法(暴力、埃氏筛、欧拉筛)

积性函数:

数论函数:定义域为正整数域,值域为复数域的函数

积性函数:对于一个数论函数,如果 ∀ x , y \forall x,y x,y ,且 x ⊥ y x\perp y xy ,都有 f ( x y ) = f ( x ) ⋅ f ( y ) f(xy)=f(x)\cdot f(y) f(xy)=f(x)f(y) ,那么 f f f 是一个积性函数。

完全积性函数:对于一个数论函数,如果 ∀ x , y \forall x,y x,y ,且 x , y x,y x,y 不需要互质,都有 f ( x y ) = f ( x ) ⋅ f ( y ) f(xy)=f(x)\cdot f(y) f(xy)=f(x)f(y) ,那么 f f f 是一个完全积性函数。

一些常见的积性函数:

1. 1. 1. 1 1 1 函数: f ( n ) = 1 f(n)=1 f(n)=1

2. 2. 2. 幂函数: i d k ( n ) = n k id_k(n)=n^k idk(n)=nk

3. 3. 3. 狄利克雷卷积单位元: ε ( n ) = { 1 , n = 1 0 , n ≠ 1 \varepsilon(n)=\begin{cases}1,&n=1\\0,&n\neq1\end{cases} ε(n)={1,0,n=1n=1

4. 4. 4. 因子幂和函数: σ k ( n ) = ∑ i ∣ n i k \sigma_k(n)=\sum_{i|n}i^k σk(n)=inik

5. 5. 5. 欧拉函数: φ ( n ) = ∑ i = 1 i ≤ n 1 [ n ⊥ i ] \varphi(n)=\sum_{i=1}^{i\le n}1[n\perp i] φ(n)=i=1in1[ni]

6. 6. 6. 莫比乌斯函数: μ ( n ) = { 0 , … 1 ( − 1 ) k , … 2 \mu(n)=\begin{cases}0,&\dots1\\(-1)^k,&\dots2\end{cases} μ(n)={0,(1)k,12

注: 1 : n 1:n 1:n 无平方因子。 2 : n 2:n 2:n 有平方因子, k k k n n n 的质因子个数。

7. 7. 7. 最大公因数: g c d k ( n ) = gcd ⁡ ( n , k ) gcd_k(n)=\gcd(n,k) gcdk(n)=gcd(n,k)

其实大部分今天都没卵用

欧拉函数的求解:

若设 n = p 1 k 1 ⋅ 2 k 2 ⋅ … ⋅ p r k r n=p_1^{k_1}\cdotp_2^{k_2}\cdot\ldots\cdot p_r^{k_r} n=p1k12k2prkr

φ ( n ) = n ⋅ ( 1 − 1 p 1 ) ⋅ ( 1 − 1 p 2 ) ⋅ … ⋅ ( 1 − 1 p r ) \varphi(n)=n\cdot(1-{1\over {p_1}})\cdot(1-{1\over {p_2}})\cdot\ldots\cdot(1-{1\over {p_r}}) φ(n)=n(1p11)(1p21)(1pr1)

习题:

P2303 [SDOI2012] Longge 的问题

P2568 GCD

P2158 [SDOI2008] 仪仗队

7.欧拉定理

内容:

a ⊥ n a\perp n an ,那么 a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)}\equiv1\pmod n aφ(n)1(modn)

n n n 为质数时,就是费马小定理。

证明:

1 1 1 n n n 互质的数为 x 1 , x 2 , … , x φ ( n ) x_1,x_2,\dots,x_{\varphi(n)} x1,x2,,xφ(n)

P i = x i ∗ a   m o d   n P_i=x_i*a\bmod n Pi=xiamodn ,尝试证 P i P_i Pi 两两不同。

∃ \exists i , j i,j i,j ,使 P i ≡ P j ( m o d n ) P_i\equiv P_j\pmod n PiPj(modn) ,则 n ∣ a ( x i − x j ) n|a(x_i-x_j) na(xixj)

考虑到 a ⊥ n a\perp n an n ∣ ( x i − x j ) n|(x_i-x_j) n(xixj) ,但又 x i − x j ≠ 0 x_i-x_j\neq0 xixj=0 ∣ x i − x j ∣ < n |x_i-x_j|<n xixj<n ,显然假设不成立。

gcd ⁡ ( P i , n ) = d \gcd(P_i,n)=d gcd(Pi,n)=d ,由于 a ⋅ x i = P i + k n a\cdot x_i=P_i+kn axi=Pi+kn d ∣ n , d ∣ P i d|n,d|P_i dn,dPi ∴ d ∣ a ⋅ x i \therefore d|a\cdot x_i daxi

a ⊥ n , x i ⊥ n a\perp n,x_i\perp n an,xin ∴ d = 1 , P i ⊥ n \therefore d=1,P_i\perp n d=1,Pin

综上, P i P_i Pi x i x_i xi 的另一种排列,所以

a ⋅ x 1 ⋅ a ⋅ x 2 ⋅ … ⋅ a ⋅ x φ ( n ) ≡ P 1 ⋅ P 2 ⋅ … ⋅ P φ ( n ) ( m o d n ) a\cdot x_1\cdot a\cdot x_2\cdot\ldots\cdot a\cdot x_{\varphi(n)}\equiv P_1\cdot P_2\cdot\ldots\cdot P_{\varphi(n)}\pmod n ax1ax2axφ(n)P1P2Pφ(n)(modn)

a ⋅ x 1 ⋅ a ⋅ x 2 ⋅ … ⋅ a ⋅ x φ ( n ) ≡ x 1 ⋅ x 2 ⋅ … ⋅ x φ ( n ) ( m o d n ) a\cdot x_1\cdot a\cdot x_2\cdot\ldots\cdot a\cdot x_{\varphi(n)}\equiv x_1\cdot x_2\cdot\ldots\cdot x_{\varphi(n)}\pmod n ax1ax2axφ(n)x1x2xφ(n)(modn)

a φ ( n ) ≡ 1 ( m o d n ) a^{\varphi(n)}\equiv1\pmod n aφ(n)1(modn)

8.拓展欧拉定理

内容:

a 2 φ ( n ) ≡ a φ ( n ) ( m o d n ) a^{2\varphi(n)}\equiv a^{\varphi(n)}\pmod n a2φ(n)aφ(n)(modn)

即若 b > φ ( n ) b>\varphi(n) b>φ(n) a b ≡ a ( b   m o d   φ ( n ) + φ ( n ) ) ( m o d n ) a^b\equiv a^{(b\bmod \varphi(n)+\varphi(n))}\pmod n aba(bmodφ(n)+φ(n))(modn)

证明:

a = p 1 k 1 ⋅ 2 k 2 ⋅ … ⋅ p r k r a=p_1^{k_1}\cdotp_2^{k_2}\cdot\ldots\cdot p_r^{k_r} a=p1k12k2prkr

先证 p b ≡ p ( b   m o d   φ ( n ) + φ ( n ) ) ( m o d n ) p^b\equiv p^{(b\bmod \varphi(n)+\varphi(n))}\pmod n pbp(bmodφ(n)+φ(n))(modn)

1. 1. 1. p ⊥ n p\perp n pn :欧拉定理本定理。
2. 2. 2. p , n p,n p,n 不互质:

p ∣ n p|n pn n ≧ 2 p n\geqq 2p n2p 。设 n = s ⋅ p r n=s\cdot p^r n=spr ,其中 s ⊥ p s\perp p sp

那么由欧拉定理, p φ ( n ) ≡ 1 ( m o d s ) p^{\varphi(n)}\equiv1\pmod s pφ(n)1(mods) φ ( n ) = φ ( s ) ∗ φ ( p r ) \varphi(n)=\varphi(s)*\varphi(p^r) φ(n)=φ(s)φ(pr)

p φ ( s ) = ( p φ ( n ) ) φ ( p r ) ≡ 1 φ ( p r ) ≡ 1 ( m o d s ) p^{\varphi(s)}={(p^{\varphi(n)})}^{\varphi(p^r)}\equiv1^{\varphi(p^r)}\equiv1\pmod s pφ(s)=(pφ(n))φ(pr)1φ(pr)1(mods)

p φ ( n ) + r ≡ p r ( m o d n ) p^{\varphi(n)+r}\equiv p^r\pmod n pφ(n)+rpr(modn)

p b ≡ p b − r ∗ p r ≡ p b − r ∗ p φ ( n ) + r ≡ p b + φ ( n ) ( m o d n ) p^b\equiv p^{b-r}*p^r\equiv p^{b-r}*p^{\varphi(n)+r}\equiv p^{b+\varphi(n)}\pmod n pbpbrprpbrpφ(n)+rpb+φ(n)(modn)

既然 p b ≡ p b + φ ( n ) ( m o d n ) p^b\equiv p^{b+\varphi(n)}\pmod n pbpb+φ(n)(modn) ,那么当 b > φ ( n ) b>\varphi(n) b>φ(n) 时, p b ≡ p b − φ ( n ) ( m o d n ) p^b\equiv p^{b-\varphi(n)}\pmod n pbpbφ(n)(modn)

∴ p b ≡ p b   m o d   φ ( n ) + φ ( n ) ( m o d n ) \therefore p^b\equiv p^{b\bmod\varphi(n)+\varphi(n)}\pmod n pbpbmodφ(n)+φ(n)(modn)

证毕。

习题:

P5091 【模板】扩展欧拉定理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值