整数分块——operator_

1.算法简介

这是一种很简单但好用且优雅的 n \sqrt n n 分块。

考虑求 ∑ i = 1 n ⌊ n i ⌋ \sum_{i=1}^n \lfloor \dfrac{n}{i}\rfloor i=1nin ,很容易发现 ⌊ n i ⌋ \lfloor \dfrac{n}{i}\rfloor in 的值的种类不多,考虑按值域来求解。

事实上, ⌊ n i ⌋ \lfloor \dfrac{n}{i}\rfloor in 的值最多只有 2 n 2\sqrt n 2n 种(并不严谨,但反正是 n \sqrt n n 级别的),证明如下:

对于 i > n i>\sqrt n i>n ⌊ n i ⌋ ≤ n i < n \lfloor \dfrac{n}{i}\rfloor\le\dfrac{n}{i}<\sqrt n inin<n ,显然只有最多 n \sqrt n n 个整数符合。

对于 i ≤ n i\le\sqrt n in ,每个 i i i ⌊ n i ⌋ \lfloor \dfrac{n}{i}\rfloor in 不一样也最多只有 n \sqrt n n 个。

然后就证毕了。

如果你想,你可以去 AC 一道CF绿题

然后我们回到本来的式子上去,因为值域不连续,而区间是连续的,所以考虑枚举每一种取值相等的区间,具体来说就是递推左边界,并求出对应区间的右边界。显然地,在 i ≤ n i\le\sqrt n in 时左边界等于右边界。

求右边界的方法很简单:r=n/(n/l)(均为整除)。 其证明如下:

a = ⌊ n l ⌋ a=\lfloor \dfrac{n}{l}\rfloor a=ln

⌊ n r ⌋ = a ⇔ a ≤ n r ⇔ r ≤ n a \lfloor \dfrac{n}{r}\rfloor=a\Leftrightarrow a\le\dfrac{n}{r}\Leftrightarrow r\le\dfrac{n}{a} rn=aarnran

所以 r m a x = ⌊ n a ⌋ r_{max}=\lfloor \dfrac{n}{a}\rfloor rmax=an

代码简洁至极:

for(int l=1,r;l<=n;l=r+1)
    r=n/(n/l),ans+=(n/l)*(r-l+1);

2.例题

本来不想放例题的,但洛谷上没标签,硬生生找了好久的题

例1.P3935 Calculating

原式 = ∑ i = 1 r f ( i ) − ∑ i = 1 l − 1 f ( i ) =\sum_{i=1}^rf(i)-\sum_{i=1}^{l-1}f(i) =i=1rf(i)i=1l1f(i)

g ( x ) = ∑ i = 1 x f ( i ) g(x)=\sum_{i=1}^xf(i) g(x)=i=1xf(i) ,则原式 = g ( r ) − g ( l − 1 ) =g(r)-g(l-1) =g(r)g(l1) (就是个前缀和罢了…)

考虑 f ( i ) f(i) f(i) ,发现其实就是 i i i 的因数个数,所以我们换个思路,不要对于每个数求因数个数,而是求每个数的贡献 ,所以 g ( x ) = ∑ i = 1 x ⌊ x i ⌋ g(x)=\sum_{i=1}^x\lfloor\dfrac{x}{i}\rfloor g(x)=i=1xix ,然后就是一个板题了。

例2.P2261 [CQOI2007] 余数求和

原式 = ∑ i = 1 n k − i ⌊ k i ⌋ = n k − ∑ i = 1 n i ⌊ k i ⌋ =\sum_{i=1}^nk-i\lfloor\dfrac{k}{i}\rfloor=nk-\sum_{i=1}^ni\lfloor\dfrac{k}{i}\rfloor =i=1nkiik=nki=1niik

还是按板子来,对于每一块相等的数作一个等差数列求和作为贡献就好了。

例3.[ARC068E] Snuke Line

容易发现,第 i i i 个商品会对列车 d d d 做出贡献当且仅当 l i ≤ k ∗ d ≤ r i l_i\le k*d\le r_i likdri ,等价于 l i d ≤ k ≤ r i d \dfrac{l_i}{d}\le k\le\dfrac{r_i}{d} dlikdri

因为 k k k 是整数,所以有 ⌊ l i − 1 d ⌋ < ⌈ l i d ⌉ ≤ k ≤ ⌊ r i d ⌋ \lfloor\dfrac{l_i-1}{d}\rfloor<\lceil\dfrac{l_i}{d}\rceil\le k\le\lfloor\dfrac{r_i}{d}\rfloor dli1<dlikdri

⌊ l i − 1 d ⌋ < ⌊ r i d ⌋ \lfloor\dfrac{l_i-1}{d}\rfloor<\lfloor\dfrac{r_i}{d}\rfloor dli1<dri

这个东西发现满足条件的 d d d 不超过 n \sqrt n n 个连续区间,可以用整数分块+差分搞定。

例4.P2260 [清华集训2012] 模积和

先容斥掉 i ≠ j i\neq j i=j 的限制,然后按例2的方法做,得到一个比较恶心的式子:(记 g n , x = ∑ i = 1 n i ⌊ x i ⌋ , m i n n = m i n ( n , m ) ) g_{n,x}=\sum_{i=1}^ni\lfloor\dfrac{x}{i}\rfloor,minn=min(n,m)) gn,x=i=1niix,minn=min(n,m))

( n 2 − g n , n ) ∗ ( m 2 − g m , m ) − m i n n ⋅ n m + n g m i n n , m + m g m i n n , n − ∑ i = 1 m i n n i 2 ⌊ n i ⌋ ⌊ m i ⌋ (n^2-g_{n,n})*(m^2-g_{m,m})-minn\cdot nm+ng_{minn,m}+mg_{minn,n}-\sum_{i=1}^{minn}i^2\lfloor\dfrac{n}{i}\rfloor\lfloor\dfrac{m}{i}\rfloor (n2gn,n)(m2gm,m)minnnm+ngminn,m+mgminn,ni=1minni2inim

然后呢?就没有然后了,都是可以整数分块维护的。

特别注意一下最后那个东西,需要用到 ∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^ni^2=\dfrac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值